Biblio
Digital connectivity is fundamental to the health care system to deliver safe and effective care. However, insecure connectivity could be a major threat to patient safety and privacy (e.g., in August 2017, FDA recalled 465,000 pacemakers because of discovering security flaws). Although connecting a patient's pacemaker to the Internet has many advantages for monitoring the patient, this connectivity opens a new door for cyber-attackers to steal the patient data or even control the pacemaker or damage it. Therefore, patients are forced to choose between connectivity and security. This paper presents a framework for secure and private communications between wearable medical devices and patient monitoring systems. The primary objective of this research is twofold, first to identify and analyze the communication vulnerabilities, second, to develop a framework for combating unauthorized access to data through the compromising of computer security. Specifically, hiding targets from cyber-attackers could prevent our system from future cyber-attacks. This is the most effective way to stop cyber-attacks in their first step.
Software security is a major concern of the developers who intend to deliver a reliable software. Although there is research that focuses on vulnerability prediction and discovery, there is still a need for building security-specific metrics to measure software security and vulnerability-proneness quantitatively. The existing methods are either based on software metrics (defined on the physical characteristics of code; e.g. complexity or lines of code) which are not security-specific or some generic patterns known as nano-patterns (Java method-level traceable patterns that characterize a Java method or function). Other methods predict vulnerabilities using text mining approaches or graph algorithms which perform poorly in cross-project validation and fail to be a generalized prediction model for any system. In this paper, we envision to construct an automated framework that will assist developers to assess the security level of their code and guide them towards developing secure code. To accomplish this goal, we aim to refine and redefine the existing nano-patterns and software metrics to make them more security-centric so that they can be used for measuring the software security level of a source code (either file or function) with higher accuracy. In this paper, we present our visionary approach through a series of three consecutive studies where we (1) will study the challenges of the current software metrics and nano-patterns in vulnerability prediction, (2) will redefine and characterize the nano-patterns and software metrics so that they can capture security-specific properties of code and measure the security level quantitatively, and finally (3) will implement an automated framework for the developers to automatically extract the values of all the patterns and metrics for the given code segment and then flag the estimated security level as a feedback based on our research results. We accomplished some preliminary experiments and presented the results which indicate that our vision can be practically implemented and will have valuable implications in the community of software security.
Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.
The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.
Building lightweight security for low-cost pervasive devices is a major challenge considering the design requirements of a small footprint and low power consumption. Physical Unclonable Functions (PUFs) have emerged as a promising technology to provide a low-cost authentication for such devices. By exploiting intrinsic manufacturing process variations, PUFs are able to generate unique and apparently random chip identifiers. Strong-PUFs represent a variant of PUFs that have been suggested for lightweight authentication applications. Unfortunately, many of the Strong-PUFs have been shown to be susceptible to modelling attacks (i.e., using machine learning techniques) in which an adversary has access to challenge and response pairs. In this study, we propose an obfuscation technique during post-processing of Strong-PUF responses to increase the resilience against machine learning attacks. We conduct machine learning experiments using Support Vector Machines and Artificial Neural Networks on two Strong-PUFs: a 32-bit Arbiter-PUF and a 2-XOR 32-bit Arbiter-PUF. The predictability of the 32-bit Arbiter-PUF is reduced to $\approx$ 70% by using an obfuscation technique. Combining the obfuscation technique with 2-XOR 32-bit Arbiter-PUF helps to reduce the predictability to $\approx$ 64%. More reduction in predictability has been observed in an XOR Arbiter-PUF because this PUF architecture has a good uniformity. The area overhead with an obfuscation technique consumes only 788 and 1080 gate equivalents for the 32-bit Arbiter-PUF and 2-XOR 32-bit Arbiter-PUF, respectively.
Use of digital token - which certifies the bearer's rights to some kind of products or services - is quite common nowadays for its convenience, ease of use and cost-effectiveness. Many of such digital tokens, however, are produced with software alone, making them vulnerable to forgery, including alteration and duplication. For a more secure safeguard for both token owner's right and service provider's accountability, digital tokens should be tamper-resistant as much as possible in order for them to withstand physical attacks as well. In this paper, we present a rights management system that leverages tamper-resistant digital tokens created by hardware-software collaboration in our eTRON architecture. The system features the complete life cycle of a digital token from generation to storage and redemption. Additionally, it provides a secure mechanism for transfer of rights in a peer-to-peer manner over the Internet. The proposed system specifies protocols for permissible manipulation on digital tokens, and subsequently provides a set of APIs for seamless application development. Access privileges to the tokens are strictly defined and state-of-the-art asymmetric cryptography is used for ensuring their confidentiality. Apart from the digital tokens being physically tamper-resistant, the protocols involved in the system are proven to be secure against attacks. Furthermore, an authentication mechanism is implemented that invariably precedes any operation involving the digital token in question. The proposed system presents clear security gains compared to existing systems that do not take tamper-resistance into account, and schemes that use symmetric key cryptography.
The data accessibility anytime and anywhere is nowadays the key feature for information technology enabled by the ubiquitous network system for huge applications. However, security and privacy are perceived as primary obstacles to its wide adoption when it is applied to the end user application. When sharing sensitive information, personal s' data protection is the paramount requirement for the security and privacy to ensure the trustworthiness of the service provider. To this end, this paper proposes communication security protocol to achieve data protection when a user is sending his sensitive data to the network through gateway. We design a cipher content and key exchange computation process. Finally, the performance analysis of the proposed scheme ensure the honesty of the gateway service provider, since the user has the ability to control who has access to his data by issuing a cryptographic access credential to data users.
5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.
The increasing demand for secure interactions between network domains brings in new challenges to access control technologies. In this paper we design an access control framework which provides a multilevel mapping method between hierarchical access control structures for achieving multilevel security protection in cross-domain networks. Hierarchical access control structures ensure rigorous multilevel security in intra domains. And the mapping method based on subject attributes is proposed to determine the subject's security level in its target domain. Experimental results we obtained from simulations are also reported in this paper to verify the effectiveness of the proposed access control model.