Biblio
Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.
Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.
This paper studies and describes encrypted communication between IoT cloud and IoT embedded systems. It uses encrypted MQTTS protocol with SSL/TLS certificate. A JSON type data format is used between the cloud structure and the IoT device. The embedded system used in this experiment is Esp32 Wrover. The IoT embedded system measures temperature and humidity from a sensor DHT22. The architecture and software implementation of the experimental stage are also presented.
The problem statement is that at present there is no stable algorithm which provides security for resource constrained devices because classic cryptography algorithms are too heavy to be implemented. So we will provide a model about the various cryptographic algorithms in this field which can be modified to be implement on constrained devices. The advantages and disadvantages of IOT devices will be taken into consideration to develop a model. Mainly IOT devices works on three layers which are physical layer, application and commutation layer. We have discuss how IOT devices individually works on these layers and how security is compromised. So, we can build a model where minimum intervention of third party is involved i.e. hackers and we can have higher and tight privacy and security system [1].we will discuss about the different ciphers(block and stream) and functions(hash algorithms) through which we can achieve cryptographic algorithms which can be implemented on resource constrained devices. Cost, safety and productivity are the three parameters which determines the ratio for block cipher. Mostly programmers are forced to choose between these two; either cost and safety, safety and productivity, cost and productivity. The main challenge is to optimize or balance between these three factors which is extremely a difficult task to perform. In this paper we will try to build a model which will optimize these three factors and will enhance the security of IOT devices.
Nowadays, the rapid development of the Internet of Things facilitates human life and work, while it also brings great security risks to the society due to the frequent occurrence of various security issues. IoT device has the characteristics of large-scale deployment and single responsibility application, which makes it easy to cause a chain reaction and results in widespread privacy leakage and system security problems when the software vulnerability is identified. It is difficult to guarantee that there is no security hole in the IoT operating system which is usually designed for MCU and has no kernel mode. An alternative solution is to identify the security issues in the first time when the system is hijacked and suspend the suspicious task before it causes irreparable damage. This paper proposes KLRA (A Kernel Level Resource Auditing Tool) for IoT Operating System Security This tool collects the resource-sensitive events in the kernel and audit the the resource consumption pattern of the system at the same time. KLRA can take fine-grained events measure with low cost and report the relevant security warning in the first time when the behavior of the system is abnormal compared with daily operations for the real responsibility of this device. KLRA enables the IoT operating system for MCU to generate the security early warning and thereby provides a self-adaptive heuristic security mechanism for the entire IoT system.
IoT device usually has an associated application to facilitate customers' interactions with the device, and customers need to register an account to use this application as well. Due to the popularity of mobile phone, a customer is encouraged to register an account with his own mobile phone number. After binding the device to his account, the customer can control his device remotely with his smartphone. When a customer forgets his password, he can use his mobile phone to receive a verification code that is sent by the Short Message Service (SMS) to authenticate and reset his password. If an attacker gains this code, he can steal the victim's account (reset password or login directly) to control the IoT device. Although IoT device vendors have already deployed a set of security countermeasures to protect account such as setting expiration time for SMS authentication code, HTTP encryption, and application packing, this paper shows that existing IoT account password reset via SMS authentication code are still vulnerable to brute-force attacks. In particular, we present an automatic brute-force attack to bypass current protections and then crack IoT device user account. Our preliminary study on popular IoT devices such as smart lock, smart watch, smart router, and sharing car has discovered six account login zero-day vulnerabilities.
The Semantic Web can be used to enable the interoperability of IoT devices and to annotate their functional and nonfunctional properties, including security and privacy. In this paper, we will show how to use the ontology and JSON-LD to annotate connectivity, security and privacy properties of IoT devices. Out of that, we will present our prototype for a lightweight, secure application level protocol wrapper that ensures communication consistency, secrecy and integrity for low cost IoT devices like the ESP8266 and Photon particle.
We propose $μ$Leech, a new embedded trusted platform module for next generation power scavenging devices. Such power scavenging devices are already widely deployed. For instance, the Square point-of-sale reader uses the microphone/speaker interface of a smartphone for communications and as power supply. While such devices are used as trusted devices in security critical applications in the wild, they have not been properly evaluated yet. $μ$Leech can securely store keys and provide cryptographic services to any connected smart phone. Our design also facilitates physical security analysis by providing interfaces to facilitate acquisition of power traces and clock manipulation attacks. Thus $μ$Leech empowers security researchers to analyze leakage in next generation embedded and IoT devices and to evaluate countermeasures before deployment.