Biblio
This paper analyzes security problems of modern computer systems caused by vulnerabilities in their operating systems (OSs). Our scrutiny of widely used enterprise OSs focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities Database and the Common Vulnerabilities and Exposures System. The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of OSs. This leads us to analyzing how different intrusion-tolerant architectures deploying the OS diversity impact availability, integrity, and confidentiality.
While there has been considerable research on making power grid Supervisory Control and Data Acquisition (SCADA) systems resilient to attacks, the problem of transitioning these technologies into deployed SCADA systems remains largely unaddressed. We describe our experience and lessons learned in deploying an intrusion-tolerant SCADA system in two realistic environments: a red team experiment in 2017 and a power plant test deployment in 2018. These experiences resulted in technical lessons related to developing an intrusion-tolerant system with a real deployable application, preparing a system for deployment in a hostile environment, and supporting protocol assumptions in that hostile environment. We also discuss some meta-lessons regarding the cultural aspects of transitioning academic research into practice in the power industry.
Emerging intelligent systems have stringent constraints including cost and power consumption. When they are used in critical applications, resiliency becomes another key requirement. Much research into techniques for fault tolerance and dependability has been successfully applied to highly critical systems, such as those used in space, where cost is not an overriding constraint. Further, most resiliency techniques were focused on dealing with failures in the hardware and bugs in the software. The next generation of systems used in critical applications will also have to be tolerant to test escapes after manufacturing, soft errors and transients in the electronics, hardware bugs, hardware and software Trojans and viruses, as well as intrusions and other security attacks during operation. This paper will assess the impact of these threats on the results produced by a critical system, and proposed solutions to each of them. It is argued that run-time checks at the application-level are necessary to deal with errors in the results.
Computer security has gained more and more attention in a public over the last years, since computer systems are suffering from significant and increasing security threats that cause security breaches by exploiting software vulnerabilities. The most efficient way to ensure the system security is to patch the vulnerable system before a malicious attack occurs. Besides the commonly-used push-type patch management, the pull-type patch management is also adopted. The main issues in the pull-type patch management are two-fold; when to check the vulnerability information and when to apply a patch? This paper considers the security patch management for a virtual machine (VM) based intrusion tolerant system (ITS), where the system undergoes the patch management with a periodic vulnerability checking strategy, and evaluates the system security from the availability aspect. A composite stochastic reward net (SRN) model is applied to capture the attack behavior of adversary and the defense behaviors of system. Two availability measures; interval availability and point-wise availability are formulated to quantify the system security via phase expansion. The proposed approach and metrics not only enable us to quantitatively assess the system security, but also provide insights on the patch management. In numerical experiments, we evaluate effects of the intrusion rate and the number of vulnerability checking on the system security.
With the development of computer technology and the popularization of network, network brings great convenience to colleagues and risks to people from all walks of life all over the world. The data in the network world is growing explosively. Various kinds of intrusions are emerging in an endless stream. The means of network intrusion are becoming more and more complex. The intrusions occur at any time and the security threats become more and more serious. Defense alone cannot meet the needs of system security. It is also necessary to monitor the behavior of users in the network at any time and detect new intrusions that may occur at any time. This will not only make people's normal network needs cannot be guaranteed, but also face great network risks. So that people not only rely on defensive means to protect network security, this paper explores block chain network intrusion detection system. Firstly, the characteristics of block chain are briefly introduced, and the challenges of block chain network intrusion security and privacy are proposed. Secondly, the intrusion detection system of WLAN is designed experimentally. Finally, the conclusion analysis of block chain network intrusion detection system is discussed.
We will focused the concept of serializability in order to ensure the correct processing of transactions. However, both serializability and relevant properties within transaction-based applications might be affected. Ensure transaction serialization in corrupt systems is one of the demands that can handle properly interrelated transactions, which prevents blocking situations that involve the inability to commit either transaction or related sub-transactions. In addition some transactions has been marked as malicious and they compromise the serialization of running system. In such context, this paper proposes an approach for the processing of transactions in a cloud of databases environment able to secure serializability in running transactions whether the system is compromised or not. We propose also an intrusion tolerant scheme to ensure the continuity of the running transactions. A case study and a simulation result are shown to illustrate the capabilities of the suggested system.
The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.
In order to support large volume of transactions and number of users, as estimated by the load demand modeling, a system needs to scale in order to continue to satisfy required quality attributes. In particular, for systems exposed to the Internet, scaling up may increase the attack surface susceptible to malicious intrusions. The new proactive approach based on the concept of Moving Target Defense (MTD) should be considered as a complement to current cybersecurity protection. In this paper, we analyze the scalability of the Self Cleansing Intrusion Tolerance (SCIT) MTD approach using Cloud infrastructure services. By applying the model of MTD with continuous rotation and diversity to a multi-node or multi-instance system, we argue that the effectiveness of the approach is dependent on the share-nothing architecture pattern of the large system. Furthermore, adding more resources to the MTD mechanism can compensate to achieve the desired level of secure availability.
Barrier coverage has been widely adopted to prevent unauthorized invasion of important areas in sensor networks. As sensors are typically placed outdoors, they are susceptible to getting faulty. Previous works assumed that faulty sensors are easy to recognize, e.g., they may stop functioning or output apparently deviant sensory data. In practice, it is, however, extremely difficult to recognize faulty sensors as well as their invalid output. We, in this paper, propose a novel fault-tolerant intrusion detection algorithm (TrusDet) based on trust management to address this challenging issue. TrusDet comprises of three steps: i) sensor-level detection, ii) sink-level decision by collective voting, and iii) trust management and fault determination. In the Step i) and ii), TrusDet divides the surveillance area into a set of fine- grained subareas and exploits temporal and spatial correlation of sensory output among sensors in different subareas to yield a more accurate and robust performance of barrier coverage. In the Step iii), TrusDet builds a trust management based framework to determine the confidence level of sensors being faulty. We implement TrusDet on HC- SR501 infrared sensors and demonstrate that TrusDet has a desired performance.
Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.
The world is becoming an immense critical information infrastructure, with the fast and increasing entanglement of utilities, telecommunications, Internet, cloud, and the emerging IoT tissue. This may create enormous opportunities, but also brings about similarly extreme security and dependability risks. We predict an increase in very sophisticated targeted attacks, or advanced persistent threats (APT), and claim that this calls for expanding the frontier of security and dependability methods and techniques used in our current CII. Extreme threats require extreme defenses: we propose resilience as a unifying paradigm to endow systems with the capability of dynamically and automatically handling extreme adversary power, and sustaining perpetual and unattended operation. In this position paper, we present this vision and describe our methodology, as well as the assurance arguments we make for the ultra-resilient components and protocols they enable, illustrated with case studies in progress.
Software-based systems are nowadays complex and highly distributed. In contrast, existing intrusion detection mechanisms are not always suitable for protecting these systems against new and sophisticated attacks that increasingly appear. In this paper, we present a new generic approach that combines monitoring and formal methods in order to ensure attack-tolerance at a high level of abstraction. Our experiments on an authentication Web application show that this method is effective and realistic to tolerate a variety of attacks.
Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.
Sophisticated cyber attacks by state-sponsored and criminal actors continue to plague government and industrial infrastructure. Intuitively, partitioning cyber systems into survivable, intrusion tolerant compartments is a good idea. This prevents witting and unwitting insiders from moving laterally and reaching back to their command and control (C2) servers. However, there is a lack of artifacts that can predict the effectiveness of this approach in a realistic setting. We extend earlier work by relaxing simplifying assumptions and providing a new attacker-facing metric. In this article, we propose new closed-form mathematical models and a discrete time simulation to predict three critical statistics: probability of compromise, probability of external host compromise and probability of reachback. The results of our new artifacts agree with one another and with previous work, which suggests they are internally valid and a viable method to evaluate the effectiveness of cyber zone defense.
Cyber infrastructures are highly vulnerable to intrusions and other threats. The main challenges in cloud computing are failure of data centres and recovery of lost data and providing a data security system. This paper has proposed a Virtualization and Data Recovery to create a virtual environment and recover the lost data from data servers and agents for providing data security in a cloud environment. A Cloud Manager is used to manage the virtualization and to handle the fault. Erasure code algorithm is used to recover the data which initially separates the data into n parts and then encrypts and stores in data servers. The semi trusted third party and the malware changes made in data stored in data centres can be identified by Artificial Intelligent methods using agents. Java Agent Development Framework (JADE) is a tool to develop agents and facilitates the communication between agents and allows the computing services in the system. The framework designed and implemented in the programming language JAVA as gateway or firewall to recover the data loss.
Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.
Cloud computation has become prominent with seemingly unlimited amount of storage and computation available to users. Yet, security is a major issue that hampers the growth of cloud. In this research we investigate a collaborative Intrusion Detection System (IDS) based on the ensemble learning method. It uses weak classifiers, and allows the use of untapped resources of cloud to detect various types of attacks on the cloud system. In the proposed system, tasks are distributed among available virtual machines (VM), individual results are then merged for the final adaptation of the learning model. Performance evaluation is carried out using decision trees and using fuzzy classifiers, on KDD99, one of the largest datasets for IDS. Segmentation of the dataset is done in order to mimic the behavior of real-time data traffic occurred in a real cloud environment. The experimental results show that the proposed approach reduces the execution time with improved accuracy, and is fault-tolerant when handling VM failures. The system is a proof-of-concept model for a scalable, cloud-based distributed system that is able to explore untapped resources, and may be used as a base model for a real-time hierarchical IDS.
The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.
Computer security has become an increasingly important hot topic in computer and communication industry, since it is important to support critical business process and to protect personal and sensitive information. Computer security is to keep security attributes (confidentiality, integrity and availability) of computer systems, which face the threats such as deny-of-service (DoS), virus and intrusion. To ensure high computer security, the intrusion tolerance technique based on fault-tolerant scheme has been widely applied. This paper presents the quantitative performance evaluation of a virtual machine (VM) based intrusion tolerant system. Concretely, two security measures are derived; MTTSF (mean time to security failure) and the effective traffic intensity. The mathematical analysis is achieved by using Laplace-Stieltjes transforms according to the analysis of M/G/1 queueing system.
As the Internet becomes an important part of the infrastructure our society depends on, it is crucial to construct networks that are able to work even when part of the network is compromised. This paper presents the first practical intrusion-tolerant network service, targeting high-value applications such as monitoring and control of global clouds and management of critical infrastructure for the power grid. We use an overlay approach to leverage the existing IP infrastructure while providing the required resiliency and timeliness. Our solution overcomes malicious attacks and compromises in both the underlying network infrastructure and in the overlay itself. We deploy and evaluate the intrusion-tolerant overlay implementation on a global cloud spanning East Asia, North America, and Europe, and make it publicly available.
Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.
Data generation and its utilization in important decision applications has been growing an extremely fast pace, which has made data a valuable resource that needs to be rigorously protected from attackers. Cloud storage systems claim to offer the promise of secure and elastic data storage services that can adapt to changing storage requirements. Despite diligent efforts being made to protect data, recent successful attacks highlight the need for going beyond the existing approaches centered on intrusion prevention, detection and recovery mechanisms. However, most security mechanisms have finite rate of failure, and with intrusion becoming more sophisticated and stealthy, the failure rate appears to be rising. In this paper we propose the use data fragmentation, followed by coding that introduces redundant fragments and dispersing fragments to multiple and independent cloud storage systems with each cloud handling only a single fragments. The paper proposes a multi-cloud fragmented cloud storage system architecture and design of the related software code. Probabilistic analysis is carried to quantify its intrusion tolerance abilities.
The cloud has become an established and widespread paradigm. This success is due to the gain of flexibility and savings provided by this technology. However, the main obstacle to full cloud adoption is security. The cloud, as many other systems taking advantage of the Internet, is also facing threats that compromise data confidentiality and availability. In addition, new cloud-specific attacks have emerged and current intrusion detection and prevention mechanisms are not enough to protect the complex infrastructure of the cloud from these vulnerabilities. Furthermore, one of the promises of the cloud is the Quality of Service (QoS) by continuous delivery, which must be ensured even in case of intrusion. This work presents an overview of the main cloud vulnerabilities, along with the solutions proposed in the context of the H2020 CLARUS project in terms of monitoring techniques for intrusion detection and prevention, including attack-tolerance mechanisms.