Visible to the public Biblio

Filters: Keyword is knowledge based systems  [Clear All Filters]
2019-12-16
Alam, Mehreen.  2018.  Neural Encoder-Decoder based Urdu Conversational Agent. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :901–905.
Conversational agents have very much become part of our lives since the renaissance of neural network based "neural conversational agents". Previously used manually annotated and rule based methods lacked the scalability and generalization capabilities of the neural conversational agents. A neural conversational agent has two parts: at one end an encoder understands the question while the other end a decoder prepares and outputs the corresponding answer to the question asked. Both the parts are typically designed using recurrent neural network and its variants and trained in an end-to-end fashion. Although conversation agents for other languages have been developed, Urdu language has seen very less progress in building of conversational agents. Especially recent state of the art neural network based techniques have not been explored yet. In this paper, we design an attention driven deep encoder-decoder based neural conversational agent for Urdu language. Overall, we make following contributions we (i) create a dataset of 5000 question-answer pairs, and (ii) present a new deep encoder-decoder based conversational agent for Urdu language. For our work, we limit the knowledge base of our agent to general knowledge regarding Pakistan. Our best model has the BLEU score of 58 and gives syntactically and semantically correct answers in majority of the cases.
2019-12-09
Cococcioni, Marco.  2018.  Computational Intelligence in Maritime Security and Defense: Challenges and Opportunities. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1964-1967.

Computational Intelligence (CI) has a great potential in Security & Defense (S&D) applications. Nevertheless, such potential seems to be still under exploited. In this work we first review CI applications in the maritime domain, done in the past decades by NATO Nations. Then we discuss challenges and opportunities for CI in S&D. Finally we argue that a review of the academic training of military officers is highly recommendable, in order to allow them to understand, model and solve new problems, using CI techniques.

2019-05-01
Naik, N., Shang, C., Shen, Q., Jenkins, P..  2018.  Vigilant Dynamic Honeypot Assisted by Dynamic Fuzzy Rule Interpolation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1731–1738.

Dynamic Fuzzy Rule Interpolation (D-FRI) offers a dynamic rule base for fuzzy systems which is especially useful for systems with changing requirements and limited prior knowledge. This suggests a possible application of D-FRI in the area of network security due to the volatility of the traffic. A honeypot is a valuable tool in the field of network security for baiting attackers and collecting their information. However, typically designed with fewer resources they are not considered as a primary security tool for use in network security. Consequently, such honeypots can be vulnerable to many security attacks. One such attack is a spoofing attack which can cause severe damage to the honeypot, making it inefficient. This paper presents a vigilant dynamic honeypot based on the D-FRI approach for use in predicting and alerting of spoofing attacks on the honeypot. First, it proposes a technique for spoofing attack identification based on the analysis of simulated attack data. Then, the paper employs the identification technique to develop a D-FRI based vigilant dynamic honeypot, allowing the honeypot to predict and alert that a spoofing attack is taking place in the absence of matching rules. The resulting system is capable of learning and maintaining a dynamic rule base for more accurate identification of potential spoofing attacks with respect to the changing traffic conditions of the network.

2019-03-04
Lin, Y., Qi, Z., Wu, H., Yang, Z., Zhang, J., Wenyin, L..  2018.  CoderChain: A BlockChain Community for Coders. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :246–247.
An online community based on blockchain is proposed for software developers to share, assess, and learn codes and other codes or software related knowledge. It involves three modules or roles, namely: developer (or coder, or more generally, knowledge contributor), code (or knowledge contribution), and jury (or assessor, who is usually a developer with advanced skills), in addition to the blockchain based database. Each full node of the blockchain hosts a copy of all activities of developers in such community, including uploading contributions, assessing others' contributions, and conducting transactions. Smart contracts are applicable to automate transactions after code assessment or other related activities. The system aims to assess and improve the value of codes accurately, stimulate the creativity of the developers, and improve software development efficiency, so as to establish a virtuous cycle of a software development community.
Zeinali, M., Hadavi, M. A..  2018.  Threat Extraction Method Based on UML Software Description. 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :1–8.
Threat modeling is one of the best practices to secure software development. A primary challenge for using this practice is how to extract threats. Existing threat extraction methods to this purpose are mainly based on penetration tests or vulnerability databases. This imposes a non-automated timeconsuming process, which fully relies on the human knowledge and expertise. In this paper, a method is presented, which can extract the threats to a software system based on the existing description of the software behavior. We elaborately describe software behavior with sequence diagrams enriched by security relevant attributes. To enrich a sequence diagram, some attributes and their associated values are added to the diagram elements and the communication between them. We have also developed a threat knowledge base from reliable sources such as CWE and CAPEC lists. Every threat in the knowledge base is described according to its occurrence conditions in the software. To extract threats of a software system, the enriched sequence diagrams describing the software behavior are matched with the threat rules in our knowledge base using a simple inference process. Results in a set of potential threats for the software system. The proposed method is applied on a software application to extract its threats. Our case study indicates the effectiveness of the proposed method compared to other existing methods.
Iqbal, A., Mahmood, F., Shalaginov, A., Ekstedt, M..  2018.  Identification of Attack-based Digital Forensic Evidences for WAMPAC Systems. 2018 IEEE International Conference on Big Data (Big Data). :3079–3087.
Power systems domain has generally been very conservative in terms of conducting digital forensic investigations, especially so since the advent of smart grids. This lack of research due to a multitude of challenges has resulted in absence of knowledge base and resources to facilitate such an investigation. Digitalization in the form of smart grids is upon us but in case of cyber-attacks, attribution to such attacks is challenging and difficult if not impossible. In this research, we have identified digital forensic artifacts resulting from a cyber-attack on Wide Area Monitoring, Protection and Control (WAMPAC) systems, which will help an investigator attribute an attack using the identified evidences. The research also shows the usage of sandboxing for digital forensics along with hardware-in-the-loop (HIL) setup. This is first of its kind effort to identify and acquire all the digital forensic evidences for WAMPAC systems which will ultimately help in building a body of knowledge and taxonomy for power system forensics.
2019-01-16
Akhtar, U., Lee, S..  2018.  Adaptive Cache Replacement in Efficiently Querying Semantic Big Data. 2018 IEEE International Conference on Web Services (ICWS). :367–370.
This paper addresses the problem of querying Knowledge bases (KBs) that store semantic big data. For efficiently querying data the most important factor is cache replacement policy, which determines the overall query response. As cache is limited in size, less frequently accessed data should be removed to provide more space to hot triples (frequently accessed). So, to achieve a similar performance to RDBMS, we proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Moreover, performance bottleneck of triplestore, makes realworld application difficult. To achieve a closer performance similar to RDBMS, we have proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Our proposed algorithm effectively replaces cache with high accuracy. To implement cache replacement policy, we have applied exponential smoothing, a forecast method, to collect most frequently accessed triples. The evaluation result shows that the proposed scheme outperforms the existing cache replacement policies, such as LRU (least recently used) and LFU (least frequently used), in terms of higher hit rates and less time overhead.
2018-01-10
Thaler, S., Menkonvski, V., Petkovic, M..  2017.  Towards a neural language model for signature extraction from forensic logs. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.
Signature extraction is a critical preprocessing step in forensic log analysis because it enables sophisticated analysis techniques to be applied to logs. Currently, most signature extraction frameworks either use rule-based approaches or handcrafted algorithms. Rule-based systems are error-prone and require high maintenance effort. Hand-crafted algorithms use heuristics and tend to work well only for specialized use cases. In this paper we present a novel approach to extract signatures from forensic logs that is based on a neural language model. This language model learns to identify mutable and non-mutable parts in a log message. We use this information to extract signatures. Neural language models have shown to work extremely well for learning complex relationships in natural language text. We experimentally demonstrate that our model can detect which parts are mutable with an accuracy of 86.4%. We also show how extracted signatures can be used for clustering log lines.
Barreira, R., Pinheiro, V., Furtado, V..  2017.  A framework for digital forensics analysis based on semantic role labeling. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :66–71.
This article describes a framework for semantic annotation of texts that are submitted for forensic analysis, based on Frame Semantics, and a knowledge base of Forensic Frames - FrameFOR. We demonstrate through experimental evaluations that the application of the Semantic Role Labeling (SRL) techniques and Natural Language Processing (NLP) in digital forensic increases the performance of the forensic experts in terms of agility, precision and recall.
Meltsov, V. Y., Lesnikov, V. A., Dolzhenkova, M. L..  2017.  Intelligent system of knowledge control with the natural language user interface. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :671–675.
This electronic document is a “live” template and already defines the components of your paper [title, text, heads, etc.] in its style sheet. The paper considers the possibility and necessity of using in modern control and training systems with a natural language interface methods and mechanisms, characteristic for knowledge processing systems. This symbiosis assumes the introduction of specialized inference machines into the testing systems. For the effective operation of such an intelligent interpreter, it is necessary to “translate” the user's answers into one of the known forms of the knowledge representation, for example, into the expressions (rules) of the first-order predicate calculus. A lexical processor, performing morphological, syntactic and semantic analysis, solves this task. To simplify further work with the rules, the Skolem-transformation is used, which allows to get rid of quantifiers and to present semantic structures in the form of sequents (clauses, disjuncts). The basic principles of operation of the inference machine are described, which is the main component of the developed intellectual subsystem. To improve the performance of the machine, one of the fastest methods was chosen - a parallel method of deductive inference based on the division of clauses. The parallelism inherent in the method, and the use of the dataflow architecture, allow parallel computations in the output machine to be implemented without additional effort on the part of the programmer. All this makes it possible to reduce the time for comparing the sequences stored in the knowledge base by several times as compared to traditional inference mechanisms that implement various versions of the principle of resolutions. Formulas and features of the technique of numerical estimation of the user's answers are given. In general, the development of the human-computer dialogue capabilities in test systems- through the development of a specialized module for processing knowledge, will increase the intelligence of such systems and allow us to directly consider the semantics of sentences, more accurately determine the relevance of the user's response to standard knowledge and, ultimately, get rid of the skeptical attitude of many managers to machine testing systems.
2017-12-12
Santos, E. E., Santos, E., Korah, J., Thompson, J. E., Murugappan, V., Subramanian, S., Zhao, Yan.  2017.  Modeling insider threat types in cyber organizations. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.

Insider threats can cause immense damage to organizations of different types, including government, corporate, and non-profit organizations. Being an insider, however, does not necessarily equate to being a threat. Effectively identifying valid threats, and assessing the type of threat an insider presents, remain difficult challenges. In this work, we propose a novel breakdown of eight insider threat types, identified by using three insider traits: predictability, susceptibility, and awareness. In addition to presenting this framework for insider threat types, we implement a computational model to demonstrate the viability of our framework with synthetic scenarios devised after reviewing real world insider threat case studies. The results yield useful insights into how further investigation might proceed to reveal how best to gauge predictability, susceptibility, and awareness, and precisely how they relate to the eight insider types.

2017-03-29
Nisha, Dave, M..  2016.  Storage as a parameter for classifying dynamic key management schemes proposed for WSNs. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). :51–56.

Real world applications of Wireless Sensor Networks such as border control, healthcare monitoring and target tracking require secure communications. Thus, during WSN setup, one of the first requirements is to distribute the keys to the sensor nodes which can be later used for securing the messages exchanged between sensors. The key management schemes in WSN secure the communication between a pair or a group of nodes. However, the storage capacity of the sensor nodes is limited which makes storage requirement as an important parameter for the evaluation of key management schemes. This paper classifies the existing key management schemes proposed for WSNs into three categories: storage inefficient, storage efficient and highly storage efficient key management schemes.

2017-02-27
Santini, R., Foglietta, C., Panzieri, S..  2015.  A graph-based evidence theory for assessing risk. 2015 18th International Conference on Information Fusion (Fusion). :1467–1474.

The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.

2015-05-06
Kobayashi, F., Talburt, J.R..  2014.  Decoupling Identity Resolution from the Maintenance of Identity Information. Information Technology: New Generations (ITNG), 2014 11th International Conference on. :349-354.

The EIIM model for ER allows for creation and maintenance of persistent entity identity structures. It accomplishes this through a collection of batch configurations that allow updates and asserted fixes to be made to the Identity knowledgebase (IKB). The model also provides a batch IR configuration that provides no maintenance activity but instead allows access to the identity information. This batch IR configuration is limited in a few ways. It is driven by the same rules used for maintaining the IKB, has no inherent method to identity "close" matches, and can only identify and return the positive matches. Through the decoupling of this configuration and its movements into an interactive role under the umbrella of an Identity Management Service, a more robust access method can be provided for the use of identity information. This more robust access to the information improved the quality of the information along multiple Information Quality dimensions.

Schaefer, J..  2014.  A semantic self-management approach for service platforms. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-4.

Future personal living environments feature an increasing number of convenience-, health- and security-related applications provided by distributed services, which do not only support users but require tasks such as installation, configuration and continuous administration. These tasks are becoming tiresome, complex and error-prone. One way to escape this situation is to enable service platforms to configure and manage themselves. The approach presented here extends services with semantic descriptions to enable platform-independent autonomous service level management using model driven architecture and autonomic computing concepts. It has been implemented as a OSGi-based semantic autonomic manager, whose concept, prototypical implementation and evaluation are presented.
 

2015-05-05
Lopes Alcantara Batista, B., Lima de Campos, G.A., Fernandez, M.P..  2014.  Flow-based conflict detection in OpenFlow networks using first-order logic. Computers and Communication (ISCC), 2014 IEEE Symposium on. :1-6.

The OpenFlow architecture is a proposal from the Clean Slate initiative to define a new Internet architecture where the network devices are simple, and the control and management plane is performed by a centralized controller. The simplicity and centralization architecture makes it reliable and inexpensive. However, this architecture does not provide mechanisms to detect conflicting in flows, allowing that unreachable flows can be configured in the network elements, and the network may not behave as expected. This paper proposes an approach to conflict detection using first-order logic to define possible antagonisms and employ an inference engine to detect conflicting flows before the OpenFlow controller implement in the network elements.
 

2015-04-30
Godwin, J.L., Matthews, P..  2014.  Rapid labelling of SCADA data to extract transparent rules using RIPPER. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-7.

This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.