Biblio
To meet the high requirement of human-machine interaction, quadruped robots with human recognition and tracking capability are studied in this paper. We first introduce a marker recognition system which uses multi-thread laser scanner and retro-reflective markers to distinguish the robot's leader and other objects. When the robot follows leader autonomously, the variant A* algorithm which having obstacle grids extended virtually (EA*) is used to plan the path. But if robots need to track and follow the leader's path as closely as possible, it will trust that the path which leader have traveled is safe enough and uses the incremental form of EA* algorithm (IEA*) to reproduce the trajectory. The simulation and experiment results illustrate the feasibility and effectiveness of the proposed algorithms.
Surveillance video systems are gaining increasing attention in the field of computer vision due to its demands of users for the seek of security. It is promising to observe the human movement and predict such kind of sense of movements. The need arises to develop a surveillance system that capable to overcome the shortcoming of depending on the human resource to stay monitoring, observing the normal and suspect event all the time without any absent mind and to facilitate the control of huge surveillance system network. In this paper, an intelligent human activity system recognition is developed. Series of digital image processing techniques were used in each stage of the proposed system, such as background subtraction, binarization, and morphological operation. A robust neural network was built based on the human activities features database, which was extracted from the frame sequences. Multi-layer feed forward perceptron network used to classify the activities model in the dataset. The classification results show a high performance in all of the stages of training, testing and validation. Finally, these results lead to achieving a promising performance in the activity recognition rate.
Business or military missions are supported by hardware and software systems. Unanticipated cyber activities occurring in supporting systems can impact such missions. In order to quantify such impact, we describe a layered graphical model as an extension of forensic investigation. Our model has three layers: the upper layer models operational tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs attack scenarios from available evidence to reconstruct their inter-relationships. In cases where not all evidence is available, the lower level reconstructs potentially missing attack steps. Using the three levels of graphs constructed in these steps, we present a method to compute the impacts of attack activities on missions. We use NIST National Vulnerability Database's (NVD)-Common Vulnerability Scoring System (CVSS) scores or forensic investigators' estimates in our impact computations. We present a case study to show the utility of our model.