Biblio
The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.
Complex systems are prevalent in many fields such as finance, security and industry. A fundamental problem in system management is to perform diagnosis in case of system failure such that the causal anomalies, i.e., root causes, can be identified for system debugging and repair. Recently, invariant network has proven a powerful tool in characterizing complex system behaviors. In an invariant network, a node represents a system component, and an edge indicates a stable interaction between two components. Recent approaches have shown that by modeling fault propagation in the invariant network, causal anomalies can be effectively discovered. Despite their success, the existing methods have a major limitation: they typically assume there is only a single and global fault propagation in the entire network. However, in real-world large-scale complex systems, it's more common for multiple fault propagations to grow simultaneously and locally within different node clusters and jointly define the system failure status. Inspired by this key observation, we propose a two-phase framework to identify and rank causal anomalies. In the first phase, a probabilistic clustering is performed to uncover impaired node clusters in the invariant network. Then, in the second phase, a low-rank network diffusion model is designed to backtrack causal anomalies in different impaired clusters. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.