Biblio
The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.
The outsourcing for fabrication introduces security threats, namely hardware Trojans (HTs). Many design-for-trust (DFT) techniques have been proposed to address such threats. However, many HT detection techniques are not effective due to the dependence on golden chips, limitation of useful information available and process variations. In this paper, we data-mine on path delay information and propose a variation-tolerant path delay order encoding technique to detect HTs.
Network traffic identification has been a hot topic in network security area. The identification of abnormal traffic can detect attack traffic and helps network manager enforce corresponding security policies to prevent attacks. Support Vector Machines (SVMs) are one of the most promising supervised machine learning (ML) algorithms that can be applied to the identification of traffic in IP networks as well as detection of abnormal traffic. SVM shows better performance because it can avoid local optimization problems existed in many supervised learning algorithms. However, as a binary classification approach, SVM needs more research in multiclass classification. In this paper, we proposed an abnormal traffic identification system(ATIS) that can classify and identify multiple attack traffic applications. Each component of ATIS is introduced in detail and experiments are carried out based on ATIS. Through the test of KDD CUP dataset, SVM shows good performance. Furthermore, the comparison of experiments reveals that scaling and parameters has a vital impact on SVM training results.