Biblio
In the process of crowdsourced testing service, the intellectual property of crowdsourced testing has been faced with problems such as code plagiarism, difficulties in confirming rights and unreliability of data. Blockchain is a decentralized, tamper-proof distributed ledger, which can help solve current problems. This paper proposes an intellectual property right confirmation system oriented to crowdsourced testing services, combined with blockchain, IPFS (Interplanetary file system), digital signature, code similarity detection to realize the confirmation of crowdsourced testing intellectual property. The performance test shows that the system can meet the requirements of normal crowdsourcing business as well as high concurrency situations.
The relevance of data protection is related to the intensive informatization of various aspects of society and the need to prevent unauthorized access to them. World spending on ensuring information security (IS) for the current state: expenses in the field of IS today amount to \$81.7 billion. Expenditure forecast by 2020: about \$105 billion [1]. Information protection of military facilities is the most critical in the public sector, in the non-state - financial organizations is one of the leaders in spending on information protection. An example of the importance of IS research is the Trojan encoder WannaCry, which infected hundreds of thousands of computers around the world, attacks are recorded in more than 116 countries. The attack of the encoder of WannaCry (Wana Decryptor) happens through a vulnerability in service Server Message Block (protocol of network access to file systems) of Windows OS. Then, a rootkit (a set of malware) was installed on the infected system, using which the attackers launched an encryption program. Then each vulnerable computer could become infected with another infected device within one local network. Due to these attacks, about \$70,000 was lost (according to data from 18.05.2017) [2]. It is assumed in the presented work, that the software level of information protection is fundamentally insufficient to ensure the stable functioning of critical objects. This is due to the possible hardware implementation of undocumented instructions, discussed later. The complexity of computing systems and the degree of integration of their components are constantly growing. Therefore, monitoring the operation of the computer hardware is necessary to achieve the maximum degree of protection, in particular, data processing methods.
{Unikernel is smaller in size than existing operating systems and can be started and shut down much more quickly and safely, resulting in greater flexibility and security. Since unikernel does not include large modules like the file system in its library to reduce its size, it is common to choose offloading to handle file IO. However, the processing of IO offload of unikernel transfers the file IO command to the proxy of the file server and copies the file IO result of the proxy. This can result in a trade-off of rapid processing, an advantage of unikernel. In this paper, we propose a method to offload file IO and to perform file IO with direct copy from file server to unikernel}.