Visible to the public Biblio

Filters: Keyword is Heterogeneous  [Clear All Filters]
2023-07-19
Cheng, Ya Qiao, Xu, Bin, Liu, Kun, Liu, Yue Fan.  2022.  Software design for recording and playback of multi-source heterogeneous data. 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT). :225—228.
The development of marine environment monitoring equipment has been improved by leaps and bounds in recent years. Numerous types of marine environment monitoring equipment have mushroomed with a wide range of high-performance capabilities. However, the existing data recording software cannot meet the demands of real-time and comprehensive data recording in view of the growing data types and the exponential data growth rate generated by various types of marine environment monitoring equipment. Based on the above-mentioned conundrum, this paper proposes a multi-source heterogeneous marine environmental data acquisition and storage method, which can record and replay multi-source heterogeneous data based upon the needs of real-time and accurate performance and also possess good compatibility and expandability.
2020-07-27
Xu, Shuiling, Ji, Xinsheng, Liu, Wenyan.  2019.  Enhancing the Reliability of NFV with Heterogeneous Backup. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :923–927.
Virtual network function provides tenant with flexible and scalable end-to-end service chaining in the cloud computing and data center environments. However, comparing with traditional hardware network devices, the uncertainty caused by software and virtualization of Network Function Virtualization expands the attack surface, making the network node vulnerable to a certain types of attacks. The existing approaches for solving the problem of reliability are able to reduce the impact of failure of physical devices, but pay little attention to the attack scenario, which could be persistent and covert. In this paper, a heterogeneous backup strategy is brought up, enhancing the intrusion tolerance of NFV SFC by dynamically switching the VNF executor. The validity of the method is verified by simulation and game theory analysis.
2019-01-16
Horton, M., Samanta, B., Reid, C., Chen, L., Kadlec, C..  2018.  Development of a Secure, Heterogeneous Cloud Robotics Infrastructure: Implementing a Mesh VPN and Robotic File System Security Practices. SoutheastCon 2018. :1–8.

Robotics and the Internet of Things (IoT) are enveloping our society at an exponential rate due to lessening costs and better availability of hardware and software. Additionally, Cloud Robotics and Robot Operating System (ROS) can offset onboard processing power. However, strong and fundamental security practices have not been applied to fully protect these systems., partially negating the benefits of IoT. Researchers are therefore tasked with finding ways of securing communications and systems. Since security and convenience are oftentimes at odds, securing many heterogeneous components without compromising performance can be daunting. Protecting systems from attacks and ensuring that connections and instructions are from approved devices, all while maintaining the performance is imperative. This paper focuses on the development of security best practices and a mesh framework with an open-source, multipoint-to-multipoint virtual private network (VPN) that can tie Linux, Windows, IOS., and Android devices into one secure fabric, with heterogeneous mobile robotic platforms running ROSPY in a secure cloud robotics infrastructure.

2018-03-05
Mahfood Haddad, Yara, Ali, Hesham H..  2017.  An Evolutionary Graph-Based Approach for Managing Self-Organized IoT Networks. Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. :113–119.

Wireless sensor networks (WSNs) are one of the most rapidly developing information technologies and promise to have a variety of applications in Next Generation Networks (NGNs) including the IoT. In this paper, the focus will be on developing new methods for efficiently managing such large-scale networks composed of homogeneous wireless sensors/devices in urban environments such as homes, hospitals, stores and industrial compounds. Heterogeneous networks were proposed in a comparison with the homogeneous ones. The efficiency of these networks will depend on several optimization parameters such as the redundancy, as well as the percentages of coverage and energy saved. We tested the algorithm using different densities of sensors in the network and different values of tuning parameters for the optimization parameters. Obtained results show that our proposed algorithm performs better than the other greedy algorithm. Moreover, networks with more sensors maintain more redundancy and better percentage of coverage. However, it wastes more energy. The same method will be used for heterogeneous wireless sensors networks where devices have different characteristics and the network acts more efficient.

2018-02-21
Bai, Xu, Jiang, Lei, Dai, Qiong, Yang, Jiajia, Tan, Jianlong.  2017.  Acceleration of RSA processes based on hybrid ARM-FPGA cluster. 2017 IEEE Symposium on Computers and Communications (ISCC). :682–688.

Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.