Biblio
Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.
Detecting process-based attacks on industrial control systems (ICS) is challenging. These cyber-attacks are designed to disrupt the industrial process by changing the state of a system, while keeping the system's behaviour close to the expected behaviour. Such anomalous behaviour can be effectively detected by an event-driven approach. Petri Net (PN) model identification has proved to be an effective method for event-driven system analysis and anomaly detection. However, PN identification-based anomaly detection methods require ICS device logs to be converted into event logs (sequence of events). Therefore, in this paper we present a formalised method for pre-processing and transforming ICS device logs into event logs. The proposed approach outperforms the previous methods of device logs processing in terms of anomaly detection. We have demonstrated the results using two published datasets.
Conducted emission of motors is a domain of interest for EMC as it may introduce disturbances in the system in which they are integrated. Nevertheless few publications deal with the susceptibility of motors, and especially, servomotors despite this devices are more and more used in automated production lines as well as for robotics. Recent papers have been released devoted to the possibility of compromising such systems by cyber-attacks. One could imagine the use of smart intentional electromagnetic interference to modify their behavior or damage them leading in the modification of the industrial process. This paper aims to identify the disturbances that may affect the behavior of a Commercial Off-The-Shelf servomotor when exposed to an electromagnetic field and the criticality of the effects with regards to its application. Experiments have shown that a train of radio frequency pulses may induce an erroneous reading of the position value of the servomotor and modify in an unpredictable way the movement of the motor's axis.
Often considered as the brain of an industrial process, Industrial control systems are presented as the vital part of today's critical infrastructure due to their crucial role in process control and monitoring. Any failure or error in the system will have a considerable damage. Their openness to the internet world raises the risk related to cyber-attacks. Therefore, it's necessary to consider cyber security challenges while designing an ICS in order to provide security services such as authentication, integrity, access control and secure communication channels. To implement such services, it's necessary to provide an efficient key management system (KMS) as an infrastructure for all cryptographic operations, while preserving the functional characteristics of ICS. In this paper we will analyze existing KMS and their suitability for ICS, then we propose a new KMS based on Identity Based Cryptography (IBC) as a better alternative to traditional KMS. In our proposal, we consider solving two security problems in IBC which brings it up to be more suitable for ICS.