Visible to the public Biblio

Filters: Keyword is network lifetime  [Clear All Filters]
2021-07-08
Ozmen, Alper, Yildiz, Huseyin Ugur, Tavli, Bulent.  2020.  Impact of Minimizing the Eavesdropping Risks on Lifetime of Underwater Acoustic Sensor Networks. 2020 28th Telecommunications Forum (℡FOR). :1—4.
Underwater Acoustic Sensor Networks (UASNs) are often deployed in hostile environments, and they face many security threats. Moreover, due to the harsh characteristics of the underwater environment, UASNs are vulnerable to malicious attacks. One of the most dangerous security threats is the eavesdropping attack, where an adversary silently collects the information exchanged between the sensor nodes. Although careful assignment of transmission power levels and optimization of data flow paths help alleviate the extent of eavesdropping attacks, the network lifetime can be negatively affected since routing could be established using sub-optimal paths in terms of energy efficiency. In this work, two optimization models are proposed where the first model minimizes the potential eavesdropping risks in the network while the second model maximizes the network lifetime under a certain level of an eavesdropping risk. The results show that network lifetimes obtained when the eavesdropping risks are minimized significantly shorter than the network lifetimes obtained without considering any eavesdropping risks. Furthermore, as the countermeasures against the eavesdropping risks are relaxed, UASN lifetime is shown to be prolonged, significantly.
2021-06-28
Sharnagat, Lekhchand, Babu, Rajesh, Adhikari, Jayant.  2020.  Trust Evaluation for Securing Compromised data Aggregation against the Collusion Attack in WSN. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1–5.
With a storage space limit on the sensors, WSN has some drawbacks related to bandwidth and computational skills. This limited resources would reduce the amount of data transmitted across the network. For this reason, data aggregation is considered as a new process. Iterative filtration (IF) algorithms, which provide trust assessment to the various sources from which the data aggregation has been performed, are efficient in the present data aggregation algorithms. Trust assessment is done with weights from the simple average method to aggregation, which treats attack susceptibility. Iteration filter algorithms are stronger than the ordinary average, but they do not handle the current advanced attack that takes advantage of false information with many compromise nodes. Iterative filters are strengthened by an initial confidence estimate to track new and complex attacks, improving the solidity and accuracy of the IF algorithm. The new method is mainly concerned with attacks against the clusters and not against the aggregator. In this process, if an aggregator is attacked, the current system fails, and the information is eventually transmitted to the aggregator by the cluster members. This problem can be detected when both cluster members and aggregators are being targeted. It is proposed to choose an aggregator which chooses a new aggregator according to the remaining maximum energy and distance to the base station when an aggregator attack is detected. It also save time and energy compared to the current program against the corrupted aggregator node.
2021-03-01
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
2020-12-14
Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
2020-10-26
Zhou, Liming, Shan, Yingzi.  2019.  Multi-branch Source Location Privacy Protection Scheme Based on Random Walk in WSNs. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :543–547.
In many applications, source nodes send the sensing information of the monitored objects and the sinks receive the transmitted data. Considering the limited resources of sensor nodes, location privacy preservation becomes an important issue. Although many schemes are proposed to preserve source or sink location security, few schemes can preserve the location security of source nodes and sinks. In order to solve this problem, we propose a novel of multi-branch source location privacy protection method based on random walk. This method hides the location of real source nodes by setting multiple proxy sources. And multiple neighbors are randomly selected by the real source node as receivers until a proxy source receives the packet. In addition, the proxy source is chosen randomly, which can prevent the attacker from obtaining the location-related data of the real source node. At the same time, the scheme sets up a branch interference area around the base station to interfere with the adversary by increasing routing branches. Simulation results describe that our scheme can efficiently protect source and sink location privacy, reduce the communication overhead, and prolong the network lifetime.
Mutalemwa, Lilian C., Shin, Seokjoo.  2019.  Investigating the Influence of Routing Scheme Algorithms on the Source Location Privacy Protection and Network Lifetime. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1188–1191.
There exist numerous strategies for Source Location Privacy (SLP) routing schemes. In this study, an experimental analysis of a few routing schemes is done to investigate the influence of the routing scheme algorithms on the privacy protection level and the network lifetime performance. The analysis involved four categories of SLP routing schemes. Analysis results revealed that the algorithms used in the representative schemes for tree-based and angle-based routing schemes incur the highest influence. The tree-based algorithm stimulates the highest energy consumption with the lowest network lifetime while the angle-based algorithm does the opposite. Moreover, for the tree-based algorithm, the influence is highly dependent on the region of the network domain.
2020-10-19
Indira, K, Ajitha, P, Reshma, V, Tamizhselvi, A.  2019.  An Efficient Secured Routing Protocol for Software Defined Internet of Vehicles. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1–4.
Vehicular ad hoc network is one of most recent research areas to deploy intelligent Transport System. Due to their highly dynamic topology, energy constrained and no central point coordination, routing with minimal delay, minimal energy and maximize throughput is a big challenge. Software Defined Networking (SDN) is new paradigm to improve overall network lifetime. It incorporates dynamic changes with minimal end-end delay, and enhances network intelligence. Along with this, intelligence secure routing is also a major constraint. This paper proposes a novel approach to Energy efficient secured routing protocol for Software Defined Internet of vehicles using Restricted Boltzmann Algorithm. This algorithm is to detect hostile routes with minimum delay, minimum energy and maximum throughput compared with traditional routing protocols.
2020-06-01
Patel, Himanshu B., Jinwala, Devesh C..  2019.  Blackhole Detection in 6LoWPAN Based Internet of Things: An Anomaly Based Approach. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :947—954.

The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.

2020-03-02
Ali, Waqas, Abbas, Ghulam, Abbas, Ziaul Haq.  2019.  Joint Sybil Attack Prevention and Energy Conservation in Wireless Sensor Networks. 2019 International Conference on Frontiers of Information Technology (FIT). :179–1795.

Sybil attacks, wherein a network is subverted by forging node identities, remains an open issue in wireless sensor networks (WSNs). This paper proposes a scheme, called Location and Communication ID (LCID) based detection, which employs residual energy, communication ID and location information of sensor nodes for Sybil attacks prevention. Moreover, LCID takes into account the resource constrained nature of WSNs and enhances energy conservation through hierarchical routing. Sybil nodes are purged before clusters formation to ensure that only legitimate nodes participate in clustering and data communication. CH selection is based on the average energy of the entire network to load-balance energy consumption. LCID selects a CH if its residual energy is greater than the average network energy. Furthermore, the workload of CHs is equally distributed among sensor nodes. A CH once selected cannot be selected again for 1/p rounds, where p is the CH selection probability. Simulation results demonstrate that, as compared to an eminent scheme, LCID has a higher Sybil attacks detection ratio, higher network lifetime, higher packet reception rate at the BS, lower energy consumption, and lower packet loss ratio.

2020-02-26
L, Nirmala Devi, K, Venkata Subbareddy.  2019.  Secure and Composite Routing Strategy through Clustering In WSN. 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC). :119–123.

Due to openness of the deployed environment and transmission medium, Wireless Sensor Networks (WSNs) suffers from various types of security attacks including Denial of service, Sinkhole, Tampering etc. Securing WSN is achieved a greater research interest and this paper proposes a new secure routing strategy for WSNs based on trust model. In this model, initially the sensor nodes of the network are formulated as clusters. Further a trust evaluation mechanism was accomplished for every sensor node at Cluster Head level to build a secure route for data transmission from sensor node to base station. Here the trust evaluation is carried out only at cluster head and also the cluster head is chosen in such a way the node having rich resources availability. The trust evaluation is a composition of the social trust and data trust. Simulation experiments are conducted over the proposed approach and the performance is measured through the performance metrics such as network lifetime, and Malicious Detection Rate. The obtained performance metrics shows the outstanding performance of proposed approach even in the increased malicious behavior of network.

2020-01-20
Bardoutsos, Andreas, Filios, Gabriel, Katsidimas, Ioannis, Nikoletseas, Sotiris.  2019.  Energy Efficient Algorithm for Multihop BLE Networks on Resource-Constrained Devices. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :400–407.

Bluetooth Low Energy is a fast growing protocol which has gained wide acceptance during last years. Key features for this growth are its high data rate and its ultra low energy consumption, making it the perfect candidate for piconets. However, the lack of expandability without serious impact on its energy consumption profile, prevents its adoption on more complex systems which depend on long network lifetime. Thus, a lot of academic research has been focused on the solution of BLE expandability problem and BLE mesh has been introduced on the latest Bluetooth version. In our point of view, most of the related work cannot be efficiently implemented in networks which are mostly comprised of constrained-resource nodes. Thus, we propose a new energy efficient tree algorithm for BLE static constrained-resources networks, which achieves a longer network lifetime by both reducing as much as possible the number of needed connection events and balancing the energy dissipation in the network.

2019-12-09
Rani, Rinki, Kumar, Sushil, Dohare, Upasana.  2019.  Trust Evaluation for Light Weight Security in Sensor Enabled Internet of Things: Game Theory Oriented Approach. IEEE Internet of Things Journal. 6:8421–8432.
In sensor-enabled Internet of Things (IoT), nodes are deployed in an open and remote environment, therefore, are vulnerable to a variety of attacks. Recently, trust-based schemes have played a pivotal role in addressing nodes' misbehavior attacks in IoT. However, the existing trust-based schemes apply network wide dissemination of the control packets that consume excessive energy in the quest of trust evaluation, which ultimately weakens the network lifetime. In this context, this paper presents an energy efficient trust evaluation (EETE) scheme that makes use of hierarchical trust evaluation model to alleviate the malicious effects of illegitimate sensor nodes and restricts network wide dissemination of trust requests to reduce the energy consumption in clustered-sensor enabled IoT. The proposed EETE scheme incorporates three dilemma game models to reduce additional needless transmissions while balancing the trust throughout the network. Specially: 1) a cluster formation game that promotes the nodes to be cluster head (CH) or cluster member to avoid the extraneous cluster; 2) an optimal cluster formation dilemma game to affirm the minimum number of trust recommendations for maintaining the balance of the trust in a cluster; and 3) an activity-based trust dilemma game to compute the Nash equilibrium that represents the best strategy for a CH to launch its anomaly detection technique which helps in mitigation of malicious activity. Simulation results show that the proposed EETE scheme outperforms the current trust evaluation schemes in terms of detection rate, energy efficiency and trust evaluation time for clustered-sensor enabled IoT.
2019-03-11
Ghafoor, K. Z., Kong, L., Sadiq, A. S., Doukha, Z., Shareef, F. M..  2018.  Trust-aware routing protocol for mobile crowdsensing environments. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :82–87.
Link quality, trust management and energy efficiency are considered as main factors that affect the performance and lifetime of Mobile CrowdSensing (MCS). Routing packets toward the sink node can be a daunting task if aforementioned factors are considered. Correspondingly, routing packets by considering only shortest path or residual energy lead to suboptimal data forwarding. To this end, we propose a Fuzzy logic based Routing (FR) solution that incorporates social behaviour of human beings, link quality, and node quality to make the optimal routing decision. FR leverages friendship mechanism for trust management, Signal to Noise Ratio (SNR) to assure good link quality node selection, and residual energy for long lasting sensor lifetime. Extensive simulations show that the FR solution outperforms the existing approaches in terms of network lifetime and packet delivery ratio.
2018-08-23
Chaturvedi, P., Daniel, A. K..  2017.  Trust aware node scheduling protocol for target coverage using rough set theory. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). :511–514.

Wireless sensor networks have achieved the substantial research interest in the present time because of their unique features such as fault tolerance, autonomous operation etc. The coverage maximization while considering the resource scarcity is a crucial problem in the wireless sensor networks. The approaches which address these problems and maximize the network lifetime are considered prominent. The node scheduling is such mechanism to address this issue. The scheduling strategy which addresses the target coverage problem based on coverage probability and trust values is proposed in Energy Efficient Coverage Protocol (EECP). In this paper the optimized decision rules is obtained by using the rough set theory to determine the number of active nodes. The results show that the proposed extension results in the lesser number of decision rules to consider in determination of node states in the network, hence it improves the network efficiency by reducing the number of packets transmitted and reducing the overhead.

2018-06-20
Martin-Escalona, I., Perrone, F., Zola, E., Barcelo-Arroyo, F..  2017.  Impact of unreliable positioning in location-based routing protocols for MANETs. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1534–1539.

MANETs have been focusing the interest of researchers for several years. The new scenarios where MANETs are being deployed make that several challenging issues remain open: node scalability, energy efficiency, network lifetime, Quality of Service (QoS), network overhead, data privacy and security, and effective routing. This latter is often seen as key since it frequently constrains the performance of the overall network. Location-based routing protocols provide a good solution for scalable MANETs. Although several location-based routing protocols have been proposed, most of them rely on error-free positions. Only few studies have focused so far on how positioning error affects the routing performance; also, most of them consider outdated solutions. This paper is aimed at filling this gap, by studying the impact of the error in the position of the nodes of two location-based routing protocols: DYMOselfwd and AODV-Line. These protocols were selected as they both aim at reducing the routing overhead. Simulations considering different mobility patterns in a dense network were conducted, so that the performance of these protocols can be assessed under ideal (i.e. error-less) and realistic (i.e. with error) conditions. The results show that AODV-Line builds less reliable routes than DYMOselfwd in case of error in the position information, thus increasing the routing overhead.

2018-04-11
Nandhini, M., Priya, P..  2017.  A Hybrid Routing Algorithm for Secure Environmental Monitoring System in WSN. 2017 International Conference on Communication and Signal Processing (ICCSP). :1061–1065.

Wireless sensor networks are the most prominent set of recently made sensor nodes. They play a numerous role in many applications like environmental monitoring, agriculture, Structural and industrial monitoring, defense applications. In WSN routing is one of the absolutely requisite techniques. It enhance the network lifetime. This can be gives additional priority and system security by using bio inspired algorithm. The combination of bio inspired algorithms and routing algorithms create a way to easy data transmission and improves network lifetime. We present a new metaheuristic hybrid algorithm namely firefly algorithm with Localizability aided localization routing protocol for encircle monitoring in wireless area. This algorithm entirely covers the wireless sensor area by localization process and clumping the sensor nodes with the use of LAL (Localizability Aided Localization) users can minimize the time latency, packet drop and packet loss compared to traditional methods.

2018-03-26
Nie, Chuanyao, Wu, Hui, Zheng, Wenguang.  2017.  Lifetime-Aware Data Collection Using a Mobile Sink in WSNs with Unreachable Regions. Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. :143–152.

Using mobile sinks to collect sensed data in WSNs (Wireless Sensor Network) is an effective technique for significantly improving the network lifetime. We investigate the problem of collecting sensed data using a mobile sink in a WSN with unreachable regions such that the network lifetime is maximized and the total tour length is minimized, and propose a polynomial-time heuristic, an ILP-based (Integer Linear Programming) heuristic and an MINLP-based (Mixed-Integer Non-Linear Programming) algorithm for constructing a shortest path routing forest for the sensor nodes in unreachable regions, two energy-efficient heuristics for partitioning the sensor nodes in reachable regions into disjoint clusters, and an efficient approach to convert the tour construction problem into a TSP (Travelling Salesman Problem). We have performed extensive simulations on 100 instances with 100, 150, 200, 250 and 300 sensor nodes in an urban area and a forest area. The simulation results show that the average lifetime of all the network instances achieved by the polynomial-time heuristic is 74% of that achieved by the ILP-based heuristic and 65% of that obtained by the MINLP-based algorithm, and our tour construction heuristic significantly outperforms the state-of-the-art tour construction heuristic EMPS.

2018-02-21
Macharla, D. R., Tejaskanda, S..  2017.  An enhanced three-layer clustering approach and security framework for battlefeld surveillance. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

Hierarchical based formation is one of the approaches widely used to minimize the energy consumption in which node with higher residual energy routes the data gathered. Several hierarchical works were proposed in the literature with two and three layered architectures. In the work presented in this paper, we propose an enhanced architecture for three layered hierarchical clustering based approach, which is referred to as enhanced three-layer hierarchical clustering approach (EHCA). The EHCA is based on an enhanced feature of the grid node in terms of its mobility. Further, in our proposed EHCA, we introduce distributed clustering technique for lower level head selection and incorporate security mechanism to detect the presence of any malicious node. We show by simulation results that our proposed EHCA reduces the energy consumption significantly and thus improves the lifetime of the network. Also, we highlight the appropriateness of the proposed EHCA for battlefield surveillance applications.