Biblio
The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.
Sybil attacks, wherein a network is subverted by forging node identities, remains an open issue in wireless sensor networks (WSNs). This paper proposes a scheme, called Location and Communication ID (LCID) based detection, which employs residual energy, communication ID and location information of sensor nodes for Sybil attacks prevention. Moreover, LCID takes into account the resource constrained nature of WSNs and enhances energy conservation through hierarchical routing. Sybil nodes are purged before clusters formation to ensure that only legitimate nodes participate in clustering and data communication. CH selection is based on the average energy of the entire network to load-balance energy consumption. LCID selects a CH if its residual energy is greater than the average network energy. Furthermore, the workload of CHs is equally distributed among sensor nodes. A CH once selected cannot be selected again for 1/p rounds, where p is the CH selection probability. Simulation results demonstrate that, as compared to an eminent scheme, LCID has a higher Sybil attacks detection ratio, higher network lifetime, higher packet reception rate at the BS, lower energy consumption, and lower packet loss ratio.
Due to openness of the deployed environment and transmission medium, Wireless Sensor Networks (WSNs) suffers from various types of security attacks including Denial of service, Sinkhole, Tampering etc. Securing WSN is achieved a greater research interest and this paper proposes a new secure routing strategy for WSNs based on trust model. In this model, initially the sensor nodes of the network are formulated as clusters. Further a trust evaluation mechanism was accomplished for every sensor node at Cluster Head level to build a secure route for data transmission from sensor node to base station. Here the trust evaluation is carried out only at cluster head and also the cluster head is chosen in such a way the node having rich resources availability. The trust evaluation is a composition of the social trust and data trust. Simulation experiments are conducted over the proposed approach and the performance is measured through the performance metrics such as network lifetime, and Malicious Detection Rate. The obtained performance metrics shows the outstanding performance of proposed approach even in the increased malicious behavior of network.
Bluetooth Low Energy is a fast growing protocol which has gained wide acceptance during last years. Key features for this growth are its high data rate and its ultra low energy consumption, making it the perfect candidate for piconets. However, the lack of expandability without serious impact on its energy consumption profile, prevents its adoption on more complex systems which depend on long network lifetime. Thus, a lot of academic research has been focused on the solution of BLE expandability problem and BLE mesh has been introduced on the latest Bluetooth version. In our point of view, most of the related work cannot be efficiently implemented in networks which are mostly comprised of constrained-resource nodes. Thus, we propose a new energy efficient tree algorithm for BLE static constrained-resources networks, which achieves a longer network lifetime by both reducing as much as possible the number of needed connection events and balancing the energy dissipation in the network.
Wireless sensor networks have achieved the substantial research interest in the present time because of their unique features such as fault tolerance, autonomous operation etc. The coverage maximization while considering the resource scarcity is a crucial problem in the wireless sensor networks. The approaches which address these problems and maximize the network lifetime are considered prominent. The node scheduling is such mechanism to address this issue. The scheduling strategy which addresses the target coverage problem based on coverage probability and trust values is proposed in Energy Efficient Coverage Protocol (EECP). In this paper the optimized decision rules is obtained by using the rough set theory to determine the number of active nodes. The results show that the proposed extension results in the lesser number of decision rules to consider in determination of node states in the network, hence it improves the network efficiency by reducing the number of packets transmitted and reducing the overhead.
MANETs have been focusing the interest of researchers for several years. The new scenarios where MANETs are being deployed make that several challenging issues remain open: node scalability, energy efficiency, network lifetime, Quality of Service (QoS), network overhead, data privacy and security, and effective routing. This latter is often seen as key since it frequently constrains the performance of the overall network. Location-based routing protocols provide a good solution for scalable MANETs. Although several location-based routing protocols have been proposed, most of them rely on error-free positions. Only few studies have focused so far on how positioning error affects the routing performance; also, most of them consider outdated solutions. This paper is aimed at filling this gap, by studying the impact of the error in the position of the nodes of two location-based routing protocols: DYMOselfwd and AODV-Line. These protocols were selected as they both aim at reducing the routing overhead. Simulations considering different mobility patterns in a dense network were conducted, so that the performance of these protocols can be assessed under ideal (i.e. error-less) and realistic (i.e. with error) conditions. The results show that AODV-Line builds less reliable routes than DYMOselfwd in case of error in the position information, thus increasing the routing overhead.
Wireless sensor networks are the most prominent set of recently made sensor nodes. They play a numerous role in many applications like environmental monitoring, agriculture, Structural and industrial monitoring, defense applications. In WSN routing is one of the absolutely requisite techniques. It enhance the network lifetime. This can be gives additional priority and system security by using bio inspired algorithm. The combination of bio inspired algorithms and routing algorithms create a way to easy data transmission and improves network lifetime. We present a new metaheuristic hybrid algorithm namely firefly algorithm with Localizability aided localization routing protocol for encircle monitoring in wireless area. This algorithm entirely covers the wireless sensor area by localization process and clumping the sensor nodes with the use of LAL (Localizability Aided Localization) users can minimize the time latency, packet drop and packet loss compared to traditional methods.
Using mobile sinks to collect sensed data in WSNs (Wireless Sensor Network) is an effective technique for significantly improving the network lifetime. We investigate the problem of collecting sensed data using a mobile sink in a WSN with unreachable regions such that the network lifetime is maximized and the total tour length is minimized, and propose a polynomial-time heuristic, an ILP-based (Integer Linear Programming) heuristic and an MINLP-based (Mixed-Integer Non-Linear Programming) algorithm for constructing a shortest path routing forest for the sensor nodes in unreachable regions, two energy-efficient heuristics for partitioning the sensor nodes in reachable regions into disjoint clusters, and an efficient approach to convert the tour construction problem into a TSP (Travelling Salesman Problem). We have performed extensive simulations on 100 instances with 100, 150, 200, 250 and 300 sensor nodes in an urban area and a forest area. The simulation results show that the average lifetime of all the network instances achieved by the polynomial-time heuristic is 74% of that achieved by the ILP-based heuristic and 65% of that obtained by the MINLP-based algorithm, and our tour construction heuristic significantly outperforms the state-of-the-art tour construction heuristic EMPS.
Hierarchical based formation is one of the approaches widely used to minimize the energy consumption in which node with higher residual energy routes the data gathered. Several hierarchical works were proposed in the literature with two and three layered architectures. In the work presented in this paper, we propose an enhanced architecture for three layered hierarchical clustering based approach, which is referred to as enhanced three-layer hierarchical clustering approach (EHCA). The EHCA is based on an enhanced feature of the grid node in terms of its mobility. Further, in our proposed EHCA, we introduce distributed clustering technique for lower level head selection and incorporate security mechanism to detect the presence of any malicious node. We show by simulation results that our proposed EHCA reduces the energy consumption significantly and thus improves the lifetime of the network. Also, we highlight the appropriateness of the proposed EHCA for battlefield surveillance applications.