Visible to the public Biblio

Filters: Keyword is Nonlinear distortion  [Clear All Filters]
2022-11-08
Wei, Yijie, Cao, Qiankai, Gu, Jie, Otseidu, Kofi, Hargrove, Levi.  2020.  A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training. 2020 IEEE Custom Integrated Circuits Conference (CICC). :1–4.
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
2021-03-09
MATSUNAGA, Y., AOKI, N., DOBASHI, Y., KOJIMA, T..  2020.  A Black Box Modeling Technique for Distortion Stomp Boxes Using LSTM Neural Networks. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :653–656.
This paper describes an experimental result of modeling stomp boxes of the distortion effect based on a machine learning approach. Our proposed technique models a distortion stomp box as a neural network consisting of LSTM layers. In this approach, the neural network is employed for learning the nonlinear behavior of the distortion stomp boxes. All the parameters for replicating the distortion sound are estimated through its training process using the input and output signals obtained from some commercial stomp boxes. The experimental result indicates that the proposed technique may have a certain appropriateness to replicate the distortion sound by using the well-trained neural networks.
2020-03-18
Zhou, Xinyan, Ji, Xiaoyu, Yan, Chen, Deng, Jiangyi, Xu, Wenyuan.  2019.  NAuth: Secure Face-to-Face Device Authentication via Nonlinearity. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2080–2088.
With the increasing prevalence of mobile devices, face-to-face device-to-device (D2D) communication has been applied to a variety of daily scenarios such as mobile payment and short distance file transfer. In D2D communications, a critical security problem is verifying the legitimacy of devices when they share no secrets in advance. Previous research addressed the problem with device authentication and pairing schemes based on user intervention or exploiting physical properties of the radio or acoustic channels. However, a remaining challenge is to secure face-to-face D2D communication even in the middle of a crowd, within which an attacker may hide. In this paper, we present Nhuth, a nonlinearity-enhanced, location-sensitive authentication mechanism for such communication. Especially, we target at the secure authentication within a limited range such as 20 cm, which is the common case for face-to-face scenarios. Nhuth contains averification scheme based on the nonlinear distortion of speaker-microphone systems and a location-based-validation model. The verification scheme guarantees device authentication consistency by extracting acoustic nonlinearity patterns (ANP) while the validation model ensures device legitimacy by measuring the time difference of arrival (TDOA) at two microphones. We analyze the security of Nhuth theoretically and evaluate its performance experimentally. Results show that Nhuth can verify the device legitimacy in the presence of nearby attackers.
2018-03-19
Chen, Z., Tondi, B., Li, X., Ni, R., Zhao, Y., Barni, M..  2017.  A Gradient-Based Pixel-Domain Attack against SVM Detection of Global Image Manipulations. 2017 IEEE Workshop on Information Forensics and Security (WIFS). :1–6.

We present a gradient-based attack against SVM-based forensic techniques relying on high-dimensional SPAM features. As opposed to prior work, the attack works directly in the pixel domain even if the relationship between pixel values and SPAM features can not be inverted. The proposed method relies on the estimation of the gradient of the SVM output with respect to pixel values, however it departs from gradient descent methodology due to the necessity of preserving the integer nature of pixels and to reduce the effect of the attack on image quality. A fast algorithm to estimate the gradient is also introduced to reduce the complexity of the attack. We tested the proposed attack against SVM detection of histogram stretching, adaptive histogram equalization and median filtering. In all cases the attack succeeded in inducing a decision error with a very limited distortion, the PSNR between the original and the attacked images ranging from 50 to 70 dBs. The attack is also effective in the case of attacks with Limited Knowledge (LK) when the SVM used by the attacker is trained on a different dataset with respect to that used by the analyst.

2018-02-21
Alrawi, H. N., Ismail, W..  2017.  Enhancing magnetic IEDs detection method utilizes an AMR-based magnetic field sensor. 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). :1–4.

Due to its low cost and availability, magnetic sensors nowadays are often incorporated into security systems to detect or localize threats. This paper, with the help of a correlated pre-published work, describes preliminary steps to ensure reliable results that could help in reducing inaccuracies/ errors in case of considering a security system that detects Magnetic IEDs employing AMR-based magnetic field sensors.