Visible to the public Biblio

Filters: Keyword is orchestration  [Clear All Filters]
2021-07-07
Diamanti, Alessio, Vilchez, José Manuel Sanchez, Secci, Stefano.  2020.  LSTM-based radiography for anomaly detection in softwarized infrastructures. 2020 32nd International Teletraffic Congress (ITC 32). :28–36.
Legacy and novel network services are expected to be migrated and designed to be deployed in fully virtualized environments. Starting with 5G, NFV becomes a formally required brick in the specifications, for services integrated within the infrastructure provider networks. This evolution leads to deployment of virtual resources Virtual-Machine (VM)-based, container-based and/or server-less platforms, all calling for a deep virtualization of infrastructure components. Such a network softwarization also unleashes further logical network virtualization, easing multi-layered, multi-actor and multi-access services, so as to be able to fulfill high availability, security, privacy and resilience requirements. However, the derived increased components heterogeneity makes the detection and the characterization of anomalies difficult, hence the relationship between anomaly detection and corresponding reconfiguration of the NFV stack to mitigate anomalies. In this article we propose an unsupervised machine-learning data-driven approach based on Long-Short- Term-Memory (LSTM) autoencoders to detect and characterize anomalies in virtualized networking services. With a radiography visualization, this approach can spot and describe deviations from nominal parameter values of any virtualized network service by means of a lightweight and iterative mean-squared reconstruction error analysis of LSTM-based autoencoders. We implement and validate the proposed methodology through experimental tests on a vIMS proof-of-concept deployed using Kubernetes.
2021-06-28
Imrith, Vashish N., Ranaweera, Pasika, Jugurnauth, Rameshwar A., Liyanage, Madhusanka.  2020.  Dynamic Orchestration of Security Services at Fog Nodes for 5G IoT. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Fog Computing is one of the edge computing paradigms that envisages being the proximate processing and storage infrastructure for a multitude of IoT appliances. With its dynamic deployability as a medium level cloud service, fog nodes are enabling heterogeneous service provisioning infrastructure that features scalability, interoperability, and adaptability. Out of the various 5G based services possible with the fog computing platforms, security services are imperative but minimally investigated direct live. Thus, in this research, we are focused on launching security services in a fog node with an architecture capable of provisioning on-demand service requests. As the fog nodes are constrained on resources, our intention is to integrate light-weight virtualization technology such as Docker for forming the service provisioning infrastructure. We managed to launch multiple security instances configured to be Intrusion Detection and Prevention Systems (IDPSs) on the fog infrastructure emulated via a Raspberry Pi-4 device. This environment was tested with multiple network flows to validate its feasibility. In our proposed architecture, orchestration strategies performed by the security orchestrator were stated as guidelines for achieving pragmatic, dynamic orchestration with fog in IoT deployments. The results of this research guarantee the possibility of developing an ambient security service model that facilitates IoT devices with enhanced security.
2020-06-01
Vural, Serdar, Minerva, Roberto, Carella, Giuseppe A., Medhat, Ahmed M., Tomasini, Lorenzo, Pizzimenti, Simone, Riemer, Bjoern, Stravato, Umberto.  2018.  Performance Measurements of Network Service Deployment on a Federated and Orchestrated Virtualisation Platform for 5G Experimentation. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The EU SoftFIRE project has built an experimentation platform for NFV and SDN experiments, tailored for testing and evaluating 5G network applications and solutions. The platform is a fully orchestrated virtualisation testbed consisting of multiple component testbeds across Europe. Users of the platform can deploy their virtualisation experiments via the platform's Middleware. This paper introduces the SoftFIRE testbed and its Middleware, and presents a set of KPI results for evaluation of experiment deployment performance.
2020-01-21
Mai, Hoang Long, Aouadj, Messaoud, Doyen, Guillaume, Mallouli, Wissam, de Oca, Edgardo Montes, Festor, Olivier.  2019.  Toward Content-Oriented Orchestration: SDN and NFV as Enabling Technologies for NDN. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :594–598.
Network Function Virtualization (NFV) is a novel paradigm which enables the deployment of network functions on commodity hardware. As such, it also stands for a deployment en-abler for any novel networking function or networking paradigm such as Named Data Networking (NDN), the most promising solution relying on the Information-Centric Networking (ICN) paradigm. However, dedicated solutions for the security and performance orchestration of such an emerging paradigm are still lacking thus preventing its adoption by network operators. In this paper, we propose a first step toward a content-oriented orchestration whose purpose is to deploy, manage and secure an NDN virtual network. We present the way we leverage the TOSCA standard, using a crafted NDN oriented extension to enable the specification of both deployment and operational behavior requirements of NDN services. We also highlight NDN-related security and performance policies to produce counter-measures against anomalies that can either come from attacks or performance incidents.
2019-09-04
Maltitz, M. von, Smarzly, S., Kinkelin, H., Carle, G..  2018.  A management framework for secure multiparty computation in dynamic environments. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Secure multiparty computation (SMC) is a promising technology for privacy-preserving collaborative computation. In the last years several feasibility studies have shown its practical applicability in different fields. However, it is recognized that administration, and management overhead of SMC solutions are still a problem. A vital next step is the incorporation of SMC in the emerging fields of the Internet of Things and (smart) dynamic environments. In these settings, the properties of these contexts make utilization of SMC even more challenging since some vital premises for its application regarding environmental stability and preliminary configuration are not initially fulfilled. We bridge this gap by providing FlexSMC, a management and orchestration framework for SMC which supports the discovery of nodes, supports a trust establishment between them and realizes robustness of SMC session by handling nodes failures and communication interruptions. The practical evaluation of FlexSMC shows that it enables the application of SMC in dynamic environments with reasonable performance penalties and computation durations allowing soft real-time and interactive use cases.
2018-08-23
Arellanes, D., Lau, K..  2017.  D-XMAN: A Platform For Total Compositionality in Service-Oriented Architectures. 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2). :283–286.

Current software platforms for service composition are based on orchestration, choreography or hierarchical orchestration. However, such approaches for service composition only support partial compositionality; thereby, increasing the complexity of SOA development. In this paper, we propose DX-MAN, a platform that supports total compositionality. We describe the main concepts of DX-MAN with the help of a case study based on the popular MusicCorp.

2018-02-28
Arellanes, D., Lau, K. K..  2017.  Exogenous Connectors for Hierarchical Service Composition. 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA). :125–132.

Service composition is currently done by (hierarchical) orchestration and choreography. However, these approaches do not support explicit control flow and total compositionality, which are crucial for the scalability of service-oriented systems. In this paper, we propose exogenous connectors for service composition. These connectors support both explicit control flow and total compositionality in hierarchical service composition. To validate and evaluate our proposal, we present a case study based on the popular MusicCorp.

2018-02-21
Zhang, G., Qiu, X., Chang, W..  2017.  Scheduling of Security Resources in Software Defined Security Architecture. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :494–503.

With the development of Software Defined Networking, its software programmability and openness brings new idea for network security. Therefore, many Software Defined Security Architectures emerged at the right moment. Software Defined Security decouples security control plane and security data plane. In Software Defined Security Architectures, underlying security devices are abstracted as security resources in resource pool, intellectualized and automated security business management and orchestration can be realized through software programming in security control plane. However, network management has been becoming extremely complicated due to expansible network scale, varying network devices, lack of abstraction and heterogeneity of network especially. Therefore, new-type open security devices are needed in SDS Architecture for unified management so that they can be conveniently abstracted as security resources in resource pool. This paper firstly analyses why open security devices are needed in SDS architecture and proposes a method of opening security devices. Considering this new architecture requires a new security scheduling mechanism, this paper proposes a security resource scheduling algorithm which is used for managing and scheduling security resources in resource pool according to user s security demand. The security resource scheduling algorithm aims to allocate a security protection task to a suitable security resource in resource pool so that improving security protection efficiency. In the algorithm, we use BP neural network to predict the execution time of security tasks to improve the performance of the algorithm. The simulation result shows that the algorithm has ideal performance. Finally, a usage scenario is given to illustrate the role of security resource scheduling in software defined security architecture.