Visible to the public Biblio

Filters: Keyword is Sorting  [Clear All Filters]
2022-12-23
Neyaz, Ashar, Shashidhar, Narasimha, Varol, Cihan, Rasheed, Amar.  2022.  Digital Forensics Analysis of Windows 11 Shellbag with Comparative Tools. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–10.
Operating systems have various components that produce artifacts. These artifacts are the outcome of a user’s interaction with an application or program and the operating system’s logging capabilities. Thus, these artifacts have great importance in digital forensics investigations. For example, these artifacts can be utilized in a court of law to prove the existence of compromising computer system behaviors. One such component of the Microsoft Windows operating system is Shellbag, which is an enticing source of digital evidence of high forensics interest. The presence of a Shellbag entry means a specific user has visited a particular folder and done some customizations such as accessing, sorting, resizing the window, etc. In this work, we forensically analyze Shellbag as we talk about its purpose, types, and specificity with the latest version of the Windows 11 operating system and uncover the registry hives that contain Shellbag customization information. We also conduct in-depth forensics examinations on Shellbag entries using three tools of three different types, i.e., open-source, freeware, and proprietary tools. Lastly, we compared the capabilities of tools utilized in Shellbag forensics investigations.
2022-07-29
Shen, Ning, Yeh, Jyh-Haw, Sun, Hung-Min, Chen, Chien-Ming.  2021.  A Practical and Secure Stateless Order Preserving Encryption for Outsourced Databases. 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC). :133—142.
Order-preserving encryption (OPE) plays an important role in securing outsourced databases. OPE schemes can be either Stateless or Stateful. Stateful schemes can achieve the ideal security of order-preserving encryption, i.e., “reveal no information about the plaintexts besides order.” However, comparing to stateless schemes, stateful schemes require maintaining some state information locally besides encryption keys and the ciphertexts are mutable. On the other hand, stateless schemes only require remembering encryption keys and thus is more efficient. It is a common belief that stateless schemes cannot provide the same level of security as stateful ones because stateless schemes reveal the relative distance among their corresponding plaintext. In real world applications, such security defects may lead to the leakage of statistical and sensitive information, e.g., the data distribution, or even negates the whole encryption. In this paper, we propose a practical and secure stateless order-preserving encryption scheme. With prior knowledge of the data to be encrypted, our scheme can achieve IND-CCPA (INDistinguishability under Committed ordered Chosen Plaintext Attacks) security for static data set. Though the IND-CCPA security can't be met for dynamic data set, our new scheme can still significantly improve the security in real world applications. Along with the encryption scheme, in this paper we also provide methods to eliminate access pattern leakage in communications and thus prevents some common attacks to OPE schemes in practice.
2021-03-29
Grochol, D., Sekanina, L..  2020.  Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
2020-12-14
Xu, S., Ouyang, Z., Feng, J..  2020.  An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.
2020-10-12
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2018.  Analysis of Adversarial Movement Through Characteristics of Graph Topological Ordering. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
Capturing the patterns in adversarial movement can provide valuable information regarding how the adversaries progress through cyberattacks. This information can be further employed for making comparisons and interpretations of decision making of the adversaries. In this study, we propose a framework based on concepts of social networks to characterize and compare the patterns, variations and shifts in the movements made by an adversarial team during a real-time cybersecurity exercise. We also explore the possibility of movement association with the skill sets using topological sort networks. This research provides preliminary insight on adversarial movement complexity and linearity and decision-making as cyberattacks unfold.
2020-08-28
Brinkman, Bo.  2012.  Willing to be fooled: Security and autoamputation in augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities (ISMAR-AMH). :89—90.

What does it mean to trust, or not trust, an augmented reality system? Froma computer security point of view, trust in augmented reality represents a real threat to real people. The fact that augmented reality allows the programmer to tinker with the user's senses creates many opportunities for malfeasance. It might be natural to think that if we warn users to be careful it will lower their trust in the system, greatly reducing risk.

2020-08-14
Jin, Zhe, Chee, Kong Yik, Xia, Xin.  2019.  What Do Developers Discuss about Biometric APIs? 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :348—352.
With the emergence of biometric technology in various applications, such as access control (e.g. mobile lock/unlock), financial transaction (e.g. Alibaba smile-to-pay) and time attendance, the development of biometric system attracts increasingly interest to the developers. Despite a sound biometric system gains the security assurance and great usability, it is a rather challenging task to develop an effective biometric system. For instance, many public available biometric APIs do not provide sufficient instructions / precise documentations on the usage of biometric APIs. Many developers are struggling in implementing these APIs in various tasks. Moreover, quick update on biometric-based algorithms (e.g. feature extraction and matching) may propagate to APIs, which leads to potential confusion to the system developers. Hence, we conduct an empirical study to the problems that the developers currently encountered while implementing the biometric APIs as well as the issues that need to be addressed when developing biometric systems using these APIs. We manually analyzed a total of 500 biometric API-related posts from various online media such as Stack Overflow and Neurotechnology. We reveal that 1) most of the problems encountered are related to the lack of precise documentation on the biometric APIs; 2) the incompatibility of biometric APIs cross multiple implementation environments.
2020-06-08
Fang, Bo, Hua, Zhongyun, Huang, Hejiao.  2019.  Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket. 2019 14th International Conference on Computer Science Education (ICCSE). :5–10.
Nearest neighbor search (NNS) is one of the current popular research directions, which widely used in machine learning, pattern recognition, image detection and so on. In the low dimension data, based on tree search method can get good results. But when the data dimension goes up, that will produce a curse of dimensional. The proposed Locality-Sensitive Hashing algorithm (LSH) greatly improves the efficiency of nearest neighbor query for high dimensional data. But the algorithm relies on the building a large number of hash table, which makes the space complexity very high. C2LSH based on dynamic collision improves the disadvantage of LSH, but its disadvantage is that it needs to detect the collision times of a large number of data points which Increased query time. Therefore, Based on LSH algorithm, later researchers put forward many improved algorithms, but still not ideal.In this paper, we put forward Locality-Sensitive Hashing Scheme Based on Heap Sort of Hash Bucket (HSLSH) algorithm aiming at the shortcomings of LSH and C2LSH. Its main idea is to take advantage of the efficiency of heapsort in massive data sorting to improve the efficiency of nearest neighbor query. It only needs to rely on a small number of hash functions can not only overcome the shortcoming of LSH need to build a large number of hash table, and avoids defects of C2LSH. Experiments show that our algorithm is more than 20% better than C2LSH in query accuracy and 40% percent lower in query time.
2020-05-22
Despotovski, Filip, Gusev, Marjan, Zdraveski, Vladimir.  2018.  Parallel Implementation of K-Nearest-Neighbors for Face Recognition. 2018 26th Telecommunications Forum (℡FOR). :1—4.
Face recognition is a fast-expanding field of research. Countless classification algorithms have found use in face recognition, with more still being developed, searching for better performance and accuracy. For high-dimensional data such as images, the K-Nearest-Neighbours classifier is a tempting choice. However, it is very computationally-intensive, as it has to perform calculations on all items in the stored dataset for each classification it makes. Fortunately, there is a way to speed up the process by performing some of the calculations in parallel. We propose a parallel CUDA implementation of the KNN classifier and then compare it to a serial implementation to demonstrate its performance superiority.
2019-05-09
Hata, K., Sasaki, T., Mochizuki, A., Sawada, K., Shin, S., Hosokawa, S..  2018.  Collaborative Model-Based Fallback Control for Secured Networked Control Systems. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :5963-5970.

The authors have proposed the Fallback Control System (FCS) as a countermeasure after cyber-attacks happen in Industrial Control Systems (ICSs). For increased robustness against cyber-attacks, introducing multiple countermeasures is desirable. Then, an appropriate collaboration is essential. This paper introduces two FCSs in ICS: field network signal is driven FCS and analog signal driven FCS. This paper also implements a collaborative FCS by a collaboration function of the two FCSs. The collaboration function is that the analog signal driven FCS estimates the state of the other FCS. The collaborative FCS decides the countermeasure based on the result of the estimation after cyber-attacks happen. Finally, we show practical experiment results to analyze the effectiveness of the proposed method.

2019-03-25
Hasan, K., Shetty, S., Hassanzadeh, A., Salem, M. B., Chen, J..  2018.  Self-Healing Cyber Resilient Framework for Software Defined Networking-Enabled Energy Delivery System. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1692–1697.
Software defined networking (SDN) is a networking paradigm to provide automated network management at run time through network orchestration and virtualization. SDN can also enhance system resilience through recovery from failures and maintaining critical operations during cyber attacks. SDN's self-healing mechanisms can be leveraged to realized autonomous attack containment, which dynamically modifies access control rules based on configurable trust levels. In this paper, we present an approach to aid in selection of security countermeasures dynamically in an SDN enabled Energy Delivery System (EDS) and achieving tradeoff between providing security and QoS. We present the modeling of security cost based on end-to-end packet delay and throughput. We propose a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(M N2), where M is the number of objective functions and N is the number of population for each generation respectively. We present simulation results which illustrate how data availability and data integrity can be achieved while maintaining QoS constraints.
2019-01-31
Kozma, László, Saranurak, Thatchaphol.  2018.  Smooth Heaps and a Dual View of Self-Adjusting Data Structures. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. :801–814.

We present a new connection between self-adjusting binary search trees (BSTs) and heaps, two fundamental, extensively studied, and practically relevant families of data structures (Allen,Munro, 1978; Sleator, Tarjan, 1983; Fredman, Sedgewick, Sleator, Tarjan, 1986; Wilber, 1989; Fredman, 1999; Iacono, Özkan, 2014). Roughly speaking, we map an arbitrary heap algorithm within a broad and natural model, to a corresponding BST algorithm with the same cost on a dual sequence of operations (i.e. the same sequence with the roles of time and key-space switched). This is the first general transformation between the two families of data structures. There is a rich theory of dynamic optimality for BSTs (i.e. the theory of competitiveness between BST algorithms). The lack of an analogous theory for heaps has been noted in the literature (e.g. Pettie; 2005, 2008). Through our connection, we transfer all instance-specific lower bounds known for BSTs to a general model of heaps, initiating a theory of dynamic optimality for heaps. On the algorithmic side, we obtain a new, simple and efficient heap algorithm, which we call the smooth heap. We show the smooth heap to be the heap-counterpart of Greedy, the BST algorithm with the strongest proven and conjectured properties from the literature, conjectured to be instance-optimal (Lucas, 1988; Munro, 2000; Demaine et al., 2009). Assuming the optimality of Greedy, the smooth heap is also optimal within our model of heap algorithms. Intriguingly, the smooth heap, although derived from a non-practical BST algorithm, is simple and easy to implement (e.g. it stores no auxiliary data besides the keys and tree pointers). It can be seen as a variation on the popular pairing heap data structure, extending it with a ``power-of-two-choices'' type of heuristic. For the smooth heap we obtain instance-specific upper bounds, with applications in adaptive sorting, and we see it as a promising candidate for the long-standing question of a simpler alternative to Fibonacci heaps.

2018-09-28
Song, Youngho, Shin, Young-sung, Jang, Miyoung, Chang, Jae-Woo.  2017.  Design and implementation of HDFS data encryption scheme using ARIA algorithm on Hadoop. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :84–90.

Hadoop is developed as a distributed data processing platform for analyzing big data. Enterprises can analyze big data containing users' sensitive information by using Hadoop and utilize them for their marketing. Therefore, researches on data encryption have been widely done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES international standard data encryption algorithm. Meanwhile, the Korean government selected ARIA algorithm as a standard data encryption scheme for domestic usages. In this paper, we propose a HDFS data encryption scheme which supports both ARIA and AES algorithms on Hadoop. First, the proposed scheme provides a HDFS block-splitting component that performs ARIA/AES encryption and decryption under the Hadoop distributed computing environment. Second, the proposed scheme provides a variable-length data processing component that can perform encryption and decryption by adding dummy data, in case when the last data block does not contains 128-bit data. Finally, we show from performance analysis that our proposed scheme is efficient for various applications, such as word counting, sorting, k-Means, and hierarchical clustering.

2018-02-21
Kogos, K. G., Filippova, K. S., Epishkina, A. V..  2017.  Fully homomorphic encryption schemes: The state of the art. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :463–466.

The challenge of maintaining confidentiality of stored and processed data in a remote database or cloud is quite urgent. Using homomorphic encryption may solve the problem, because it allows to compute some functions over encrypted data without preliminary deciphering of data. Fully homomorphic encryption schemes have a number of limitations such as accumulation of noise and increase of ciphertext extension during performing operations, the range of operations is limited. Nowadays a lot of homomorphic encryption schemes and their modifications have been investigated, so more than 25 reports on homomorphic encryption schemes have already been published on Cryptology ePrint Archive for 2016. We propose an overview of current Fully Homomorphic Encryption Schemes and analyze specific operations for databases which homomorphic cryptosystems allow to perform. We also investigate the possibility of sorting over encrypted data and present our approach to compare data encrypted by Multi-bit FHE scheme.