Wu, Min-Hao, Huang, Jian-Hung, Chen, Jian-Xin, Wang, Hao-Jyun, Chiu, Chen-Yu.
2022.
Machine Learning to Identify Bitcoin Mining by Web Browsers. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE). :66—69.
In the recent development of the online cryptocurrency mining platform, Coinhive, numerous websites have employed “Cryptojacking.” They may need the unauthorized use of CPU resources to mine cryptocurrency and replace advertising income. Web cryptojacking technologies are the most recent attack in information security. Security teams have suggested blocking Cryptojacking scripts by using a blacklist as a strategy. However, the updating procedure of the static blacklist has not been able to promptly safeguard consumers because of the sharp rise in “Cryptojacking kidnapping”. Therefore, we propose a Cryptojacking identification technique based on analyzing the user's computer resources to combat the assault technology known as “Cryptojacking kidnapping.” Machine learning techniques are used to monitor changes in computer resources such as CPU changes. The experiment results indicate that this method is more accurate than the blacklist system and, in contrast to the blacklist system, manually updates the blacklist regularly. The misuse of online Cryptojacking programs and the unlawful hijacking of users' machines for Cryptojacking are becoming worse. In the future, information security undoubtedly addresses the issue of how to prevent Cryptojacking and abduction. The result of this study helps to save individuals from unintentionally becoming miners.
Salcedo, Mathew David, Abid, Mehdi, Kim, Yoohwan, Jo, Ju-Yeon.
2022.
Evil-Twin Browsers: Using Open-Source Code to Clone Browsers for Malicious Purposes. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0776—0784.
Browsers are one of the most widely used types of software around the world. This prevalence makes browsers a prime target for cyberattacks. To mitigate these threats, users can practice safe browsing habits and take advantage of the security features available to browsers. These protections, however, could be severely crippled if the browser itself were malicious. Presented in this paper is the concept of the evil-twin browser (ETB), a clone of a legitimate browser that looks and behaves identically to the original browser, but discreetly performs other tasks that harm a user's security. To better understand the concept of the evil-twin browser, a prototype ETB named ChroNe was developed. The creation and installation process of ChroN e is discussed in this paper. This paper also explores the motivation behind creating such a browser, examines existing relevant work, inspects the open-source codebase Chromium that assisted in ChroNe's development, and discusses relevant topics like ways to deliver an ETB, the capabilities of an ETB, and possible ways to defend against ETBs.
Garcia, Ailen B., Bongo, Shaina Mae C..
2022.
A Cyber Security Cognizance among College Teachers and Students in Embracing Online Education. 2022 8th International Conference on Information Management (ICIM). :116—119.
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
Turnip, Togu Novriansyah, Aruan, Hotma, Siagian, Anita Lasmaria, Siagian, Leonardo.
2022.
Web Browser Extension Development of Structured Query Language Injection Vulnerability Detection Using Long Short-Term Memory Algorithm. 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM). :1—5.
Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
Mingsheng, Xu, Chunxia, Li, Wenhui, Du.
2022.
Research and Development of Dual-Core Browser-Based Compatibility and Security. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1697—1701.
Aiming at the current troubles encountered by enterprise employees in their daily work when operating business systems due to web compatibility issues, a dual-core secure browser is designed and developed in the paper based on summarizing the current development status of multi-core browsers, key difficulties and challenges in the field. Based on the Chromium open-source project, the design of a dual-core browser auto-adaptation method is carried out. Firstly, dual-core encapsulation technology is implemented, followed by a study of the core auto-adaptation algorithm, and then a core cookie sharing function is developed based on Hook technology. In addition, the security of the browser is reinforced by designing a cookie manager, adding behavior monitoring functions, and unified platform control to enhance confidentiality and security, providing a safe and secure interface for employees' work and ubiquitous IoT access. While taking security into account, the browser realizes the need for a single browser compatible with all business system web pages of the enterprise, enhancing the operating experience of the client. Finally, the possible future research directions in this field are summarized and prospected.
Li, Xiling, Ma, Zhaofeng, Luo, Shoushan.
2022.
Blockchain-Oriented Privacy Protection with Online and Offline Verification in Cross-Chain System. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :177–181.
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Peng, Jiaqi, Yang, Ke, Xuan, Jiaxing, Li, Da, Fan, Lei.
2022.
Research on Trust Measurement of Terminal Equipment Based on Device Fingerprint. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :151–155.
Nowadays, network information security is of great concern, and the measurement of the trustworthiness of terminal devices is of great significance to the security of the entire network. The measurement method of terminal device security trust still has the problems of high complexity, lack of universality. In this paper, the device fingerprint library of device access network terminal devices is first established through the device fingerprint mixed collection method; Secondly, the software and hardware features of the device fingerprint are used to increase the uniqueness of the device identification, and the multi- dimensional standard metric is used to measure the trustworthiness of the terminal device; Finally, Block chain technology is used to store the fingerprint and standard model of network access terminal equipment on the chain. To improve the security level of network access devices, a device access method considering the trust of terminal devices from multiple perspectives is implemented.
Yadav, Abhay Kumar, Vishwakarma, Virendra Prasad.
2022.
Adoptation of Blockchain of Things(BCOT): Oppurtunities & Challenges. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–5.
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Duan, Zhentai, Zhu, Jie, Zhao, Jin Yi.
2022.
IAM-BDSS: A Secure Ciphertext-Policy and Identity- Attribute Management Data Sharing Scheme based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :117–122.
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.