Biblio
Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.
Biometric verification systems have security issues regarding the storage of biometric data in that a user's biometric features cannot be changed into other ones even when a system is compromised. To address this issue, it may be safe to store the biometrics data on a reliable remote server instead of storing them in a local device. However, this approach may raise a privacy issue. In this paper, we propose a biometric verification system where the biometric data are stored in a remote server in an encrypted form and the similarity of the user input to the registered biometric data is computed in an encrypted domain using a homomorphic encryption. We evaluated the performance of the proposed system through an implementation on an Android-based smartphone and an i7-based server.
We present a novel type of Trojan trigger targeted at the field-programmable gate array (FPGA) design flow. Traditional triggers base on rare events, such as rare values or sequences. While in most cases these trigger circuits are able to hide a Trojan attack, exhaustive functional simulation and testing will reveal the Trojan due to violation of the specification. Our trigger behaves functionally and formally equivalent to the hardware description language (HDL) specification throughout the entire FPGA design flow, until the design is written by the place-and-route tool as bitstream configuration file . From then, Trojan payload is always on. We implement the trigger signal using a 4-input lookup table (LUT), each of the inputs connecting to the same signal. This lets us directly address the least significant bit (LSB) and most significant bit (MSB) of the LUT. With the remaining 14 bits, we realize a "magic" unary operation. This way, we are able to implement 16 different Triggers. We demonstrate the attack with a simple example and discuss the effectiveness of the recent detection techniques unused circuit identification (UCI), functional analysis for nearly-unused circuit identification (FANCI) and VeriTrust in order to reveal our trigger.
The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients' data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing solutions for encrypting data in web applications poorly support such encryption. We employ a proxy that adjusts the encryption to the level necessary for the client's usage and also supports additively homomorphic encryption. This proxy is deployed at the client and all encryption keys are stored and managed there, while the application is running in the cloud. Our proxy is stateless and we only need to modify the database driver of the application. We evaluate an instantiation of our architecture on an exemplary application. We only slightly increase page load time on average from 3.1 seconds to 4.7. However, roughly 40% of all data columns remain probabilistic encrypted. The client can set the desired security level for each column using our policy mechanism. Hence our proxy architecture offers a solution to increase the confidentiality of the data at the cloud provider at a moderate performance penalty.
Android malware is becoming very effective in evading detection techniques, and traditional malware detection techniques are demonstrating their weaknesses. Signature based detection shows at least two drawbacks: first, the detection is possible only after the malware has been identified, and the time needed to produce and distribute the signature provides attackers with window of opportunities for spreading the malware in the wild. For solving this problem, different approaches that try to characterize the malicious behavior through the invoked system and API calls emerged. Unfortunately, several evasion techniques have proven effective to evade detection based on system and API calls. In this paper, we propose an approach for capturing the malicious behavior in terms of device resource consumption (using a thorough set of features), which is much more difficult to camouflage. We describe a procedure, and the corresponding practical setting, for extracting those features with the aim of maximizing their discriminative power. Finally, we describe the promising results we obtained experimenting on more than 2000 applications, on which our approach exhibited an accuracy greater than 99%.
The concept of digital right management (DRM) has become extremely important in current mobile environments. This paper shows how partial bitstream encryption can allow the secure distribution of hardware applications resembling the mechanisms of traditional software DRM. Building on the recent developments towards the secure distribution of hardware cores, the paper demonstrates a prototypical implementation of a user mobile device supporting such distribution mechanisms. The prototype extends the Android operating system with support for hardware reconfigurability and showcases the interplay of novel security concepts enabled by hardware DRM, the advantages of a design flow based on high-level synthesis, and the opportunities provided by current software-rich reconfigurable Systems-on-Chips. Relying on this prototype, we also collected extensive quantitative results demonstrating the limited overhead incurred by the secure distribution architecture.
Game theory is appropriate for studying cyber conflict because it allows for an intelligent and goal-driven adversary. Applications of game theory have led to a number of results regarding optimal attack and defense strategies. However, the overwhelming majority of applications explore overly simplistic games, often ones in which each participant's actions are visible to every other participant. These simplifications strip away the fundamental properties of real cyber conflicts: probabilistic alerting, hidden actions, unknown opponent capabilities. In this paper, we demonstrate that it is possible to analyze a more realistic game, one in which different resources have different weaknesses, players have different exploits, and moves occur in secrecy, but they can be detected. Certainly, more advanced and complex games are possible, but the game presented here is more realistic than any other game we know of in the scientific literature. While optimal strategies can be found for simpler games using calculus, case-by-case analysis, or, for stochastic games, Q-learning, our more complex game is more naturally analyzed using the same methods used to study other complex games, such as checkers and chess. We define a simple evaluation function and employ multi-step searches to create strategies. We show that such scenarios can be analyzed, and find that in cases of extreme uncertainty, it is often better to ignore one's opponent's possible moves. Furthermore, we show that a simple evaluation function in a complex game can lead to interesting and nuanced strategies that follow tactics that tend to select moves that are well tuned to the details of the situation and the relative probabilities of success.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
This paper concerns the role of human errors in the field of Early Risk assessment in Software Project Management. Researchers have recently begun to focus on human errors in early risk assessment in large software projects; statistics show it to be major components of problems in software over 80% of economic losses are attributed to this problem. There has been comparatively diminutive experimental research on the role of human errors in this context, particularly evident at the organizational level, largely because of reluctance to share information and statistics on security issues in online software application. Grounded theory has been employed to investigate the main root of human errors in online security risks as a research methodology. An open-ended question was asked of 103 information security experts around the globe and the responses used to develop a list of human errors causes by open coding. The paper represents a contribution to our understanding of the causes of human errors in information security contexts. It is also one of the first information security research studies of the kind utilizing Strauss and Glaser's grounded theory approaches together, during data collection phases to achieve the required number of participants' responses and is a significant contribution to the field.
It is a fundamental problem to decide how many copies of an unknown mixed quantum state are necessary and sufficient to determine the state. This is the quantum analogue of the problem of estimating a probability distribution given some number of samples. Previously, it was known only that estimating states to error є in trace distance required O(dr2/є2) copies for a d-dimensional density matrix of rank r. Here, we give a measurement scheme (POVM) that uses O( (dr/ δ ) ln(d/δ) ) copies to estimate ρ to error δ in infidelity. This implies O( (dr / є2)· ln(d/є) ) copies suffice to achieve error є in trace distance. For fixed d, our measurement can be implemented on a quantum computer in time polynomial in n. We also use the Holevo bound from quantum information theory to prove a lower bound of Ω(dr/є2)/ log(d/rє) copies needed to achieve error є in trace distance. This implies a lower bound Ω(dr/δ)/log(d/rδ) for the estimation error δ in infidelity. These match our upper bounds up to log factors. Our techniques can also show an Ω(r2d/δ) lower bound for measurement strategies in which each copy is measured individually and then the outcomes are classically post-processed to produce an estimate. This matches the known achievability results and proves for the first time that such “product” measurements have asymptotically suboptimal scaling with d and r.
As demand for wireless mobile connectivity continues to explode, cellular network infrastructure capacity requirements continue to grow. While 5G tries to address capacity requirements at the radio layer, the load on the cellular core network infrastructure (called Enhanced Packet Core (EPC)) stresses the network infrastructure. Our work examines the architecture, protocols of current cellular infrastructures and the workload on the EPC. We study the challenges in dimensioning capacity and review the design alternatives to support the significant scale up desired, even for the near future. We breakdown the workload on the network infrastructure into its components-signaling event transactions; database or lookup transactions and packet processing. We quantitatively show the control plane and data plane load on the various components of the EPC and estimate how future 5G cellular network workloads will scale. This analysis helps us to understand the scalability challenges for future 5G EPC network components. Other efforts to scale the 5G cellular network take a system view where the control plane is separated from the data path and is terminated on a centralized SDN controller. The SDN controller configures the data path on a widely distributed switching infrastructure. Our analysis of the workload informs us on the feasibility of various design alternatives and motivates our efforts to develop our clean-slate approach, called CleanG.
There are more and more systems using mobile devices to perform sensing tasks, but these increase the risk of leakage of personal privacy and data. Data hiding is one of the important ways for information security. Even though many data hiding algorithms have worked on providing more hiding capacity or higher PSNR, there are few algorithms that can control PSNR effectively while ensuring hiding capacity. In this paper, with controllable PSNR based on LSBs substitution- PSNR-Controllable Data Hiding (PCDH), we first propose a novel encoding plan for data hiding. In PCDH, we use the remainder algorithm to calculate the hidden information, and hide the secret information in the last x LSBs of every pixel. Theoretical proof shows that this method can control the variation of stego image from cover image, and control PSNR by adjusting parameters in the remainder calculation. Then, we design the encoding and decoding algorithms with low computation complexity. Experimental results show that PCDH can control the PSNR in a given range while ensuring high hiding capacity. In addition, it can resist well some steganalysis. Compared to other algorithms, PCDH achieves better tradeoff among PSNR, hiding capacity, and computation complexity.
Healing Process is a major role in developing resiliency in cyber-physical system where the environment is diverse in nature. Cyber-physical system is modelled with Multi Agent Paradigm and biological inspired Danger Theory based-Artificial Immune Recognization2 Algorithm Methodology towards developing healing process. The Proposed methodology is implemented in a simulation environment and percentage of Convergence rates shown in achieving accuracy in the healing process to resiliency in cyber-physical system environment is shown.
Presented at the NSA Science of Security Quarterly Meeting, October 2014 and the Illinois SoS Bi-Weekly Meeting, November 2014.
The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.
Anonymous messaging applications have recently gained popularity as a means for sharing opinions without fear of judgment or repercussion. These messages propagate anonymously over a network, typically de ned by social connections or physical proximity. However, recent advances in rumor source detection show that the source of such an anonymous message can be inferred by certain statistical inference attacks. Adaptive di usion was recently proposed as a solution that achieves optimal source obfuscation over regular trees. However, in real social networks, the degrees difer from node to node, and adaptive di usion can be signicantly sub-optimal. This gap increases as the degrees become more irregular.
In order to quantify this gap, we model the underlying network as coming from standard branching processes with i.i.d. degree distributions. Building upon the analysis techniques from branching processes, we give an analytical characterization of the dependence of the probability of detection achieved by adaptive di usion on the degree distribution. Further, this analysis provides a key insight: passing a rumor to a friend who has many friends makes the source more ambiguous. This leads to a new family of protocols that we call Preferential Attachment Adaptive Di usion (PAAD). When messages are propagated according to PAAD, we give both the MAP estimator for nding the source and also an analysis of the probability of detection achieved by this adversary. The analytical results are not directly comparable, since the adversary's observed information has a di erent distribution under adaptive di usion than under PAAD. Instead, we present results from numerical experiments that suggest that PAAD achieves a lower probability of detection, at the cost of increased communication for coordination.
Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.
Cloud Computing is emerging as a new paradigm that aims delivering computing as a utility. For the cloud computing paradigm to be fully adopted and effectively used, it is critical that the security mechanisms are robust and resilient to faults and attacks. Securing cloud systems is extremely complex due to the many interdependent tasks such as application layer firewalls, alert monitoring and analysis, source code analysis, and user identity management. It is strongly believed that we cannot build cloud services that are immune to attacks. Resiliency to attacks is becoming an important approach to address cyber-attacks and mitigate their impacts. Resiliency for mission critical systems is demanded higher. In this paper, we present a methodology to develop an Autonomic Resilient Cloud Management (ARCM) based on moving target defense, cloud service Behavior Obfuscation (BO), and autonomic computing. By continuously and randomly changing the cloud execution environments and platform types, it will be difficult especially for insider attackers to figure out the current execution environment and their existing vulnerabilities, thus allowing the system to evade attacks. We show how to apply the ARCM to one class of applications, Map/Reduce, and evaluate its performance and overhead.
Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.