Biblio
The paper dwells on the peculiarities of stylometry technologies usage to determine the style of the author publications. Statistical linguistic analysis of the author's text allows taking advantage of text content monitoring based on Porter stemmer and NLP methods to determine the set of stop words. The latter is used in the methods of stylometry to determine the ownership of the analyzed text to a specific author in percentage points. There is proposed a formal approach to the definition of the author's style of the Ukrainian text in the article. The experimental results of the proposed method for determining the ownership of the analyzed text to a particular author upon the availability of the reference text fragment are obtained. The study was conducted on the basis of the Ukrainian scientific texts of a technical area.
This paper proposed method for source code authorship attribution using modern natural language processing methods. Our method based on text embedding with convolutional recurrent neural network reaches 94.5% accuracy within 500 authors in one dataset, which outperformed many state of the art models for authorship attribution. Our approach is dealing with source code as with natural language texts, so it is potentially programming language independent with more potential of future improving.
The results of recent experiments have suggested that code stylometry can successfully identify the author of short programs from among hundreds of candidates with up to 98% precision. This potential ability to discern the programmer of a code sample from a large group of possible authors could have concerning consequences for the open-source community at large, particularly those contributors that may wish to remain anonymous. Recent international events have suggested the developers of certain anti-censorship and anti-surveillance tools are being targeted by their governments and forced to delete their repositories or face prosecution. In light of this threat to the freedom and privacy of individual programmers around the world, we devised a tool, Style Counsel, to aid programmers in obfuscating their inherent style and imitating another, overt, author's style in order to protect their anonymity from this forensic technique. Our system utilizes the implicit rules encoded in the decision points of a random forest ensemble in order to derive a set of recommendations to present to the user detailing how to achieve this obfuscation and mimicry attack.
Program authorship attribution has implications for the privacy of programmers who wish to contribute code anonymously. While previous work has shown that complete files that are individually authored can be attributed, these efforts have focused on ideal data sets such as the Google Code Jam data. We explore the problem of attribution "in the wild," examining source code obtained from open source version control systems, and investigate if and how such contributions can be attributed to their authors, either individually or on a per-account basis. In this work we show that accounts belonging to open source contributors containing short, incomplete, and typically uncompilable fragments can be effectively attributed.
Darknet markets are online services behind Tor where cybercriminals trade illegal goods and stolen datasets. In recent years, security analysts and law enforcement start to investigate the darknet markets to study the cybercriminal networks and predict future incidents. However, vendors in these markets often create multiple accounts ($\backslash$em i.e., Sybils), making it challenging to infer the relationships between cybercriminals and identify coordinated crimes. In this paper, we present a novel approach to link the multiple accounts of the same darknet vendors through photo analytics. The core idea is that darknet vendors often have to take their own product photos to prove the possession of the illegal goods, which can reveal their distinct photography styles. To fingerprint vendors, we construct a series deep neural networks to model the photography styles. We apply transfer learning to the model training, which allows us to accurately fingerprint vendors with a limited number of photos. We evaluate the system using real-world datasets from 3 large darknet markets (7,641 vendors and 197,682 product photos). A ground-truth evaluation shows that the system achieves an accuracy of 97.5%, outperforming existing stylometry-based methods in both accuracy and coverage. In addition, our system identifies previously unknown Sybil accounts within the same markets (23) and across different markets (715 pairs). Further case studies reveal new insights into the coordinated Sybil activities such as price manipulation, buyer scam, and product stocking and reselling.
In this paper, we present initial work towards creating an intelligent interface that can act as an open access laboratory for visual stylometry called WAIVS, Workflows for Analysis of Images and Visual Stylometry. WAIVS allows scholars, students, and other interested parties to explore the nature of artistic style using cutting-edge research methods in visual stylometry. We create semantic workflows for this interface using various computer vision algorithms that not only facilitate artistically significant analyses but also impose intelligent semantic constraints on complex analyses. In the interface, we combine these workflows with a manually-curated dataset for analysis of artistic style based on either the school of art or the medium.
De-anonymizing the authors of anonymous code (i.e., code stylometry) entails significant privacy and security implications. Most existing code stylometry methods solely rely on static (e.g., lexical, layout, and syntactic) features extracted from source code, while neglecting its key difference from regular text – it is executable! In this paper, we present Sundae, a novel code de-anonymization framework that integrates both static and dynamic stylometry analysis. Compared with the existing solutions, Sundae departs in significant ways: (i) it requires much less number of static, hand-crafted features; (ii) it requires much less labeled data for training; and (iii) it can be readily extended to new programmers once their stylometry information becomes available Through extensive evaluation on benchmark datasets, we demonstrate that Sundae delivers strong empirical performance. For example, under the setting of 229 programmers and 9 problems, it outperforms the state-of-art method by a margin of 45.65% on Python code de-anonymization. The empirical results highlight the integration of static and dynamic analysis as a promising direction for code stylometry research.
Sites for online classified ads selling sex are widely used by human traffickers to support their pernicious business. The sheer quantity of ads makes manual exploration and analysis unscalable. In addition, discerning whether an ad is advertising a trafficked victim or an independent sex worker is a very difficult task. Very little concrete ground truth (i.e., ads definitively known to be posted by a trafficker) exists in this space. In this work, we develop tools and techniques that can be used separately and in conjunction to group sex ads by their true owner (and not the claimed author in the ad). Specifically, we develop a machine learning classifier that uses stylometry to distinguish between ads posted by the same vs. different authors with 90% TPR and 1% FPR. We also design a linking technique that takes advantage of leakages from the Bitcoin mempool, blockchain and sex ad site, to link a subset of sex ads to Bitcoin public wallets and transactions. Finally, we demonstrate via a 4-week proof of concept using Backpage as the sex ad site, how an analyst can use these automated approaches to potentially find human traffickers.
The veil of anonymity provided by smartphones with pre-paid SIM cards, public Wi-Fi hotspots, and distributed networks like Tor has drastically complicated the task of identifying users of social media during forensic investigations. In some cases, the text of a single posted message will be the only clue to an author's identity. How can we accurately predict who that author might be when the message may never exceed 140 characters on a service like Twitter? For the past 50 years, linguists, computer scientists, and scholars of the humanities have been jointly developing automated methods to identify authors based on the style of their writing. All authors possess peculiarities of habit that influence the form and content of their written works. These characteristics can often be quantified and measured using machine learning algorithms. In this paper, we provide a comprehensive review of the methods of authorship attribution that can be applied to the problem of social media forensics. Furthermore, we examine emerging supervised learning-based methods that are effective for small sample sizes, and provide step-by-step explanations for several scalable approaches as instructional case studies for newcomers to the field. We argue that there is a significant need in forensics for new authorship attribution algorithms that can exploit context, can process multi-modal data, and are tolerant to incomplete knowledge of the space of all possible authors at training time.
Among many research efforts devoted to automated art investigations, the problem of quantification of literary style remains current. Meanwhile, linguists and computer scientists have tried to sort out texts according to their types or authors. We use the recently-introduced p-leader multifractal formalism to analyze a corpus of novels written for adults and young adults, with the goal of assessing if a difference in style can be found. Our results agree with the interpretation that novels written for young adults largely follow conventions of the genre, whereas novels written for adults are less homogeneous.
Different data mining techniques are employed in stylometry domain for performing authorship attribution tasks. Sometimes to improve the decision system the discretization of input data can be applied. In many cases such approach allows to obtain better classification results. On the other hand, there were situations in which discretization decreased overall performance of the system. Therefore, the question arose what would be the result if only some selected attributes were discretized. The paper presents the results of the research performed for forward sequential selection of attributes to be discretized. The influence of such approach on the performance of the decision system, based on Naive Bayes classifier in authorship attribution domain, is presented. Some basic discretization methods and different approaches to discretization of the test datasets are taken into consideration.
The notion of style is pivotal to literature. The choice of a certain writing style moulds and enhances the overall character of a book. Stylometry uses statistical methods to analyze literary style. This work aims to build a recommendation system based on the similarity in stylometric cues of various authors. The problem at hand is in close proximity to the author attribution problem. It follows a supervised approach with an initial corpus of books labelled with their respective authors as training set and generate recommendations based on the misclassified books. Results in book similarity are substantiated by domain experts.
Spammers use automated content spinning techniques to evade plagiarism detection by search engines. Text spinners help spammers in evading plagiarism detectors by automatically restructuring sentences and replacing words or phrases with their synonyms. Prior work on spun content detection relies on the knowledge about the dictionary used by the text spinning software. In this work, we propose an approach to detect spun content and its seed without needing the text spinner's dictionary. Our key idea is that text spinners introduce stylometric artifacts that can be leveraged for detecting spun documents. We implement and evaluate our proposed approach on a corpus of spun documents that are generated using a popular text spinning software. The results show that our approach can not only accurately detect whether a document is spun but also identify its source (or seed) document - all without needing the dictionary used by the text spinner.
We are currently witnessing the development of increasingly effective author identification systems (AISs) that have the potential to track users across the internet based on their writing style. In this paper, we discuss two methods for providing user anonymity with respect to writing style: Adversarial Stylometry and Adversarial Authorship. With Adversarial Stylometry, a user attempts to obfuscate their writing style by consciously altering it. With Adversarial Authorship, a user can select an author cluster target (ACT) and write toward this target with the intention of subverting an AIS so that the user's writing sample will be misclassified Our results show that Adversarial Authorship via interactive evolutionary hill-climbing outperforms Adversarial Stylometry.
Active authentication is the problem of continuously verifying the identity of a person based on behavioral aspects of their interaction with a computing device. In this paper, we collect and analyze behavioral biometrics data from 200 subjects, each using their personal Android mobile device for a period of at least 30 days. This data set is novel in the context of active authentication due to its size, duration, number of modalities, and absence of restrictions on tracked activity. The geographical colocation of the subjects in the study is representative of a large closed-world environment such as an organization where the unauthorized user of a device is likely to be an insider threat: coming from within the organization. We consider four biometric modalities: 1) text entered via soft keyboard, 2) applications used, 3) websites visited, and 4) physical location of the device as determined from GPS (when outdoors) or WiFi (when indoors). We implement and test a classifier for each modality and organize the classifiers as a parallel binary decision fusion architecture. We are able to characterize the performance of the system with respect to intruder detection time and to quantify the contribution of each modality to the overall performance.
In this talk, I will discuss my lab's work in the emerging field of adversarial stylometry and machine learning. Machine learning algorithms are increasingly being used in security and privacy domains, in areas that go beyond intrusion or spam detection. For example, in digital forensics, questions often arise about the authors of documents: their identity, demographic background, and whether they can be linked to other documents. The field of stylometry uses linguistic features and machine learning techniques to answer these questions. We have applied stylometry to difficult domains such as underground hacker forums, open source projects (code), and tweets. I will discuss our Doppelgnger Finder algorithm, which enables us to group Sybil accounts on underground forums and detect blogs from Twitter feeds and reddit comments. In addition, I will discuss our work attributing unknown source code and binaries.