Biblio
Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.
Recent work proposed the concept of backdoor attacks on deep neural networks (DNNs), where misclassification rules are hidden inside normal models, only to be triggered by very specific inputs. However, these "traditional" backdoors assume a context where users train their own models from scratch, which rarely occurs in practice. Instead, users typically customize "Teacher" models already pretrained by providers like Google, through a process called transfer learning. This customization process introduces significant changes to models and disrupts hidden backdoors, greatly reducing the actual impact of backdoors in practice. In this paper, we describe latent backdoors, a more powerful and stealthy variant of backdoor attacks that functions under transfer learning. Latent backdoors are incomplete backdoors embedded into a "Teacher" model, and automatically inherited by multiple "Student" models through transfer learning. If any Student models include the label targeted by the backdoor, then its customization process completes the backdoor and makes it active. We show that latent backdoors can be quite effective in a variety of application contexts, and validate its practicality through real-world attacks against traffic sign recognition, iris identification of volunteers, and facial recognition of public figures (politicians). Finally, we evaluate 4 potential defenses, and find that only one is effective in disrupting latent backdoors, but might incur a cost in classification accuracy as tradeoff.
In this paper, we explore the authorship attribution of The Golden Lotus using the traditional machine learning method of text classification. There are four candidate authors: Shizhen Wang, Wei Xu, Kaixian Li and Zhideng Wang. We choose The Golden Lotus's poems and four candidate authors' poems as data set. According to the characteristics of Chinese ancient poem, we choose Chinese character, rhyme, genre and overlapped word as features. We use six supervised machine learning algorithms, including Logistic Regression, Random Forests, Decision Tree and Naive Bayes, SVM and KNN classifiers respectively for text binary classification and multi-classification. According to two experiments results, the style of writing of Wei Xu's poems is the most similar to that of The Golden Lotus. It is proved that among four authors, Wei Xu most likely be the author of The Golden Lotus.
The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author's gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F -Measure for gender and age detection in cyberbullying texts we collected.
Biometric techniques can help make vehicles safer to drive, authenticate users, and provide personalized in-car experiences. However, it is unclear to what extent users are willing to trade their personal biometric data for such benefits. In this early work, we conducted an open card sorting study (N=11) to better understand how well users perceive their physical, behavioral and physiological features can personally identify them. Findings showed that on average participants clustered features into six groups, and helped us revise ambiguous cards and better understand users' clustering. These findings provide the basis for a follow up online closed card sorting study to more fully understand perceived identification accuracy of (in-vehicle) biometric sensing. By uncovering this at a larger scale, we can then further study the privacy and user experience trade-off in (automated) vehicles.
Open-source software is open to anyone by design, whether it is a community of developers, hackers or malicious users. Authors of open-source software typically hide their identity through nicknames and avatars. However, they have no protection against authorship attribution techniques that are able to create software author profiles just by analyzing software characteristics. In this paper we present an author imitation attack that allows to deceive current authorship attribution systems and mimic a coding style of a target developer. Withing this context we explore the potential of the existing attribution techniques to be deceived. Our results show that we are able to imitate the coding style of the developers based on the data collected from the popular source code repository, GitHub. To subvert author imitation attack, we propose a novel author obfuscation approach that allows us to hide the coding style of the author. Unlike existing obfuscation tools, this new obfuscation technique uses transformations that preserve code readability. We assess the effectiveness of our attacks on several datasets produced by actual developers from GitHub, and participants of the GoogleCodeJam competition. Throughout our experiments we show that the author hiding can be achieved by making sensible transformations which significantly reduce the likelihood of identifying the author's style to 0% by current authorship attribution systems.
Textual deception constitutes a major problem for online security. Many studies have argued that deceptiveness leaves traces in writing style, which could be detected using text classification techniques. By conducting an extensive literature review of existing empirical work, we demonstrate that while certain linguistic features have been indicative of deception in certain corpora, they fail to generalize across divergent semantic domains. We suggest that deceptiveness as such leaves no content-invariant stylistic trace, and textual similarity measures provide a superior means of classifying texts as potentially deceptive. Additionally, we discuss forms of deception beyond semantic content, focusing on hiding author identity by writing style obfuscation. Surveying the literature on both author identification and obfuscation techniques, we conclude that current style transformation methods fail to achieve reliable obfuscation while simultaneously ensuring semantic faithfulness to the original text. We propose that future work in style transformation should pay particular attention to disallowing semantically drastic changes.
Although Stylometry has been effectively used for Authorship Attribution, there is a growing number of methods being developed that allow authors to mask their identity [2, 13]. In this paper, we investigate the usage of non-traditional feature sets for Authorship Attribution. By using non-traditional feature sets, one may be able to reveal the identity of adversarial authors who are attempting to evade detection from Authorship Attribution systems that are based on more traditional feature sets. In addition, we demonstrate how GEFeS (Genetic & Evolutionary Feature Selection) can be used to evolve high-performance hybrid feature sets composed of two non-traditional feature sets for Authorship Attribution: LIWC (Linguistic Inquiry & Word Count) and Sentiment Analysis. These hybrids were able to reduce the Adversarial Effectiveness on a test set presented in [2] by approximately 33.4%.
This paper presents an assessment of continuous verification using linguistic style as a cognitive biometric. In stylometry, it is widely known that linguistic style is highly characteristic of authorship using representations that capture authorial style at character, lexical, syntactic, and semantic levels. In this work, we provide a contrast to previous efforts by implementing a one-class classification problem using Isolation Forests. Our approach demonstrates the usefulness of this classifier for accurately verifying the genuine user, and yields recognition accuracy exceeding 98% using very small training samples of 50 and 100-character blocks.