Visible to the public Biblio

Found 146 results

Filters: Keyword is Browsers  [Clear All Filters]
2019-12-17
Huang, Jeff.  2018.  UFO: Predictive Concurrency Use-After-Free Detection. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :609-619.

Use-After-Free (UAF) vulnerabilities are caused by the program operating on a dangling pointer and can be exploited to compromise critical software systems. While there have been many tools to mitigate UAF vulnerabilities, UAF remains one of the most common attack vectors. UAF is particularly di cult to detect in concurrent programs, in which a UAF may only occur with rare thread schedules. In this paper, we present a novel technique, UFO, that can precisely predict UAFs based on a single observed execution trace with a provably higher detection capability than existing techniques with no false positives. The key technical advancement of UFO is an extended maximal thread causality model that captures the largest possible set of feasible traces that can be inferred from a given multithreaded execution trace. By formulating UAF detection as a constraint solving problem atop this model, we can explore a much larger thread scheduling space than classical happens-before based techniques. We have evaluated UFO on several real-world large complex C/C++ programs including Chromium and FireFox. UFO scales to real-world systems with hundreds of millions of events in their execution and has detected a large number of real concurrency UAFs.

2019-12-16
Marashdih, Abdalla Wasef, Zaaba, Zarul Fitri, Suwais, Khaled.  2018.  Cross Site Scripting: Investigations in PHP Web Application. 2018 International Conference on Promising Electronic Technologies (ICPET). :25–30.

Web applications are now considered one of the common platforms to represent data and conducting service releases throughout the World Wide Web. A number of the most commonly utilised frameworks for web applications are written in PHP. They became main targets because a vast number of servers are running these applications throughout the world. This increase in web application utilisation has made it more attractive to both users and hackers. According to the latest web security reports and research, cross site scripting (XSS) is the most popular vulnerability in PHP web application. XSS is considered an injection type of attack, which results in the theft of sensitive data, cookies, and sessions. Several tools and approaches have focused on detecting this kind of vulnerability in PHP source code. However, it is still a current problem in PHP web applications. This paper describes the popularity of PHP technology among other technologies, and highlight the approaches used to detect the most common vulnerabilities on PHP web applications, which is XSS. In addition, the discussion and the conclusion with future direction of research within this domain are highlighted.

Chen, Ping, Yu, Han, Zhao, Min, Wang, Jinshuang.  2018.  Research and Implementation of Cross-site Scripting Defense Method Based on Moving Target Defense Technology. 2018 5th International Conference on Systems and Informatics (ICSAI). :818–822.

The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.

Bukhari, Syed Nisar, Ahmad Dar, Muneer, Iqbal, Ummer.  2018.  Reducing attack surface corresponding to Type 1 cross-site scripting attacks using secure development life cycle practices. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1–4.

While because the range of web users have increased exponentially, thus has the quantity of attacks that decide to use it for malicious functions. The vulnerability that has become usually exploited is thought as cross-site scripting (XSS). Cross-site Scripting (XSS) refers to client-side code injection attack whereby a malicious user will execute malicious scripts (also usually stated as a malicious payload) into a legitimate web site or web based application. XSS is amongst the foremost rampant of web based application vulnerabilities and happens once an internet based application makes use of un-validated or un-encoded user input at intervals the output it generates. In such instances, the victim is unaware that their data is being transferred from a website that he/she trusts to a different site controlled by the malicious user. In this paper we shall focus on type 1 or "non-persistent cross-site scripting". With non-persistent cross-site scripting, malicious code or script is embedded in a Web request, and then partially or entirely echoed (or "reflected") by the Web server without encoding or validation in the Web response. The malicious code or script is then executed in the client's Web browser which could lead to several negative outcomes, such as the theft of session data and accessing sensitive data within cookies. In order for this type of cross-site scripting to be successful, a malicious user must coerce a user into clicking a link that triggers the non-persistent cross-site scripting attack. This is usually done through an email that encourages the user to click on a provided malicious link, or to visit a web site that is fraught with malicious links. In this paper it will be discussed and elaborated as to how attack surfaces related to type 1 or "non-persistent cross-site scripting" attack shall be reduced using secure development life cycle practices and techniques.

2019-12-02
Protzenko, Jonathan, Beurdouche, Benjamin, Merigoux, Denis, Bhargavan, Karthikeyan.  2019.  Formally Verified Cryptographic Web Applications in WebAssembly. 2019 IEEE Symposium on Security and Privacy (SP). :1256–1274.
After suffering decades of high-profile attacks, the need for formal verification of security-critical software has never been clearer. Verification-oriented programming languages like F* are now being used to build high-assurance cryptographic libraries and implementations of standard protocols like TLS. In this paper, we seek to apply these verification techniques to modern Web applications, like WhatsApp, that embed sophisticated custom cryptographic components. The problem is that these components are often implemented in JavaScript, a language that is both hostile to cryptographic code and hard to reason about. So we instead target WebAssembly, a new instruction set that is supported by all major JavaScript runtimes. We present a new toolchain that compiles Low*, a low-level subset of the F* programming language, into WebAssembly. Unlike other WebAssembly compilers like Emscripten, our compilation pipeline is focused on compactness and auditability: we formalize the full translation rules in the paper and implement it in a few thousand lines of OCaml. Using this toolchain, we present two case studies. First, we build WHACL*, a WebAssembly version of the existing, verified HACL* cryptographic library. Then, we present LibSignal*, a brand new, verified implementation of the Signal protocol in WebAssembly, that can be readily used by messaging applications like WhatsApp, Skype, and Signal.
2019-11-18
Ahmed, Abu Shohel, Aura, Tuomas.  2018.  Turning Trust Around: Smart Contract-Assisted Public Key Infrastructure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :104–111.
In past, several Certificate Authority (CA) compromise and subsequent mis-issue of certificate raise the importance of certificate transparency and dynamic trust management for certificates. Certificate Transparency (CT) provides transparency for issued certificates, thus enabling corrective measure for a mis-issued certificate by a CA. However, CT and existing mechanisms cannot convey the dynamic trust state for a certificate. To address this weakness, we propose Smart Contract-assisted PKI (SCP) - a smart contract based PKI extension - to manage dynamic trust network for PKI. SCP enables distributed trust in PKI, provides a protocol for managing dynamic trust, assures trust state of a certificate, and provides a better trust experience for end-users.
2019-10-23
Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

2019-06-10
Debatty, T., Mees, W., Gilon, T..  2018.  Graph-Based APT Detection. 2018 International Conference on Military Communications and Information Systems (ICMCIS). :1-8.

In this paper we propose a new algorithm to detect Advanced Persistent Threats (APT's) that relies on a graph model of HTTP traffic. We also implement a complete detection system with a web interface that allows to interactively analyze the data. We perform a complete parameter study and experimental evaluation using data collected on a real network. The results show that the performance of our system is comparable to currently available antiviruses, although antiviruses use signatures to detect known malwares while our algorithm solely uses behavior analysis to detect new undocumented attacks.

2019-04-05
Li, X., Cui, X., Shi, L., Liu, C., Wang, X..  2018.  Constructing Browser Fingerprint Tracking Chain Based on LSTM Model. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :213-218.
Web attacks have increased rapidly in recent years. However, traditional methods are useless to track web attackers. Browser fingerprint, as a stateless tracking technique, can be used to solve this problem. Given browser fingerprint changes easily and frequently, it is easy to lose track. Therefore, we need to improve the stability of browser fingerprint by linking the new one to the previous chain. In this paper, we propose LSTM model to learn the potential relationship of browser fingerprint evolution. In addition, we adjust the input feature vector to time series and construct training set to train the model. The results show that our model can construct the tracking chain perfectly well with average ownership up to 99.3%.
Huang, M. Chiu, Wan, Y., Chiang, C., Wang, S..  2018.  Tor Browser Forensics in Exploring Invisible Evidence. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3909-3914.
Given the high frequency of information security incidents, feeling that we may soon become innocent victims of these events may be justified. Perpetrators of information security offenses take advantage of several methods to leave no evidence of their crimes, and this pattern of hiding tracks has caused difficulties for investigators searching for digital evidence. Use of the onion router (Tor) is a common way for criminals to conceal their identities and tracks. This paper aims to explain the composition and operation of onion routing; we conduct a forensic experiment to detect the use of the Tor browser and compare several browser modes, including incognito and normal. Through the experimental method described in this paper, investigators can learn to identify perpetrators of Internet crimes, which will be helpful in future endeavors in digital forensics.
Vastel, A., Rudametkin, W., Rouvoy, R..  2018.  FP -TESTER : Automated Testing of Browser Fingerprint Resilience. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :103-107.
Despite recent regulations and growing user awareness, undesired browser tracking is increasing. In addition to cookies, browser fingerprinting is a stateless technique that exploits a device's configuration for tracking purposes. In particular, browser fingerprinting builds on attributes made available from Javascript and HTTP headers to create a unique and stable fingerprint. For example, browser plugins have been heavily exploited by state-of-the-art browser fingerprinters as a rich source of entropy. However, as browser vendors abandon plugins in favor of extensions, fingerprinters will adapt. We present FP-TESTER, an approach to automatically test the effectiveness of browser fingerprinting countermeasure extensions. We implement a testing toolkit to be used by developers to reduce browser fingerprintability. While countermeasures aim to hinder tracking by changing or blocking attributes, they may easily introduce subtle side-effects that make browsers more identifiable, rendering the extensions counterproductive. FP-TESTER reports on the side-effects introduced by the countermeasure, as well as how they impact tracking duration from a fingerprinter's point-of-view. To the best of our knowledge, FP-TESTER is the first tool to assist developers in fighting browser fingerprinting and reducing the exposure of end-users to such privacy leaks.
Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R..  2018.  FP-STALKER: Tracking Browser Fingerprint Evolutions. 2018 IEEE Symposium on Security and Privacy (SP). :728-741.
Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently-from every few hours to days-due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1, 905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.
2019-03-06
Hess, S., Satam, P., Ditzler, G., Hariri, S..  2018.  Malicious HTML File Prediction: A Detection and Classification Perspective with Noisy Data. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-7.

Cybersecurity plays a critical role in protecting sensitive information and the structural integrity of networked systems. As networked systems continue to expand in numbers as well as in complexity, so does the threat of malicious activity and the necessity for advanced cybersecurity solutions. Furthermore, both the quantity and quality of available data on malicious content as well as the fact that malicious activity continuously evolves makes automated protection systems for this type of environment particularly challenging. Not only is the data quality a concern, but the volume of the data can be quite small for some of the classes. This creates a class imbalance in the data used to train a classifier; however, many classifiers are not well equipped to deal with class imbalance. One such example is detecting malicious HMTL files from static features. Unfortunately, collecting malicious HMTL files is extremely difficult and can be quite noisy from HTML files being mislabeled. This paper evaluates a specific application that is afflicted by these modern cybersecurity challenges: detection of malicious HTML files. Previous work presented a general framework for malicious HTML file classification that we modify in this work to use a $\chi$2 feature selection technique and synthetic minority oversampling technique (SMOTE). We experiment with different classifiers (i.e., AdaBoost, Gentle-Boost, RobustBoost, RusBoost, and Random Forest) and a pure detection model (i.e., Isolation Forest). We benchmark the different classifiers using SMOTE on a real dataset that contains a limited number of malicious files (40) with respect to the normal files (7,263). It was found that the modified framework performed better than the previous framework's results. However, additional evidence was found to imply that algorithms which train on both the normal and malicious samples are likely overtraining to the malicious distribution. We demonstrate the likely overtraining by determining that a subset of the malicious files, while suspicious, did not come from a malicious source.

2019-02-08
Wang, M., Zhu, W., Yan, S., Wang, Q..  2018.  SoundAuth: Secure Zero-Effort Two-Factor Authentication Based on Audio Signals. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

Two-factor authentication (2FA) popularly works by verifying something the user knows (a password) and something she possesses (a token, popularly instantiated with a smart phone). Conventional 2FA systems require extra interaction like typing a verification code, which is not very user-friendly. For improved user experience, recent work aims at zero-effort 2FA, in which a smart phone placed close to a computer (where the user enters her username/password into a browser to log into a server) automatically assists with the authentication. To prove her possession of the smart phone, the user needs to prove the phone is on the login spot, which reduces zero-effort 2FA to co-presence detection. In this paper, we propose SoundAuth, a secure zero-effort 2FA mechanism based on (two kinds of) ambient audio signals. SoundAuth looks for signs of proximity by having the browser and the smart phone compare both their surrounding sounds and certain unpredictable near-ultrasounds; if significant distinguishability is found, SoundAuth rejects the login request. For the ambient signals comparison, we regard it as a classification problem and employ a machine learning technique to analyze the audio signals. Experiments with real login attempts show that SoundAuth not only is comparable to existent schemes concerning utility, but also outperforms them in terms of resilience to attacks. SoundAuth can be easily deployed as it is readily supported by most smart phones and major browsers.

2019-01-21
Nicho, M., Oluwasegun, A., Kamoun, F..  2018.  Identifying Vulnerabilities in APT Attacks: A Simulated Approach. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

This research aims to identify some vulnerabilities of advanced persistent threat (APT) attacks using multiple simulated attacks in a virtualized environment. Our experimental study shows that while updating the antivirus software and the operating system with the latest patches may help in mitigating APTs, APT threat vectors could still infiltrate the strongest defenses. Accordingly, we highlight some critical areas of security concern that need to be addressed.

2019-01-16
Jia, Z., Cui, X., Liu, Q., Wang, X., Liu, C..  2018.  Micro-Honeypot: Using Browser Fingerprinting to Track Attackers. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :197–204.
Web attacks have proliferated across the whole Internet in recent years. To protect websites, security vendors and researchers collect attack information using web honeypots. However, web attackers can hide themselves by using stepping stones (e.g., VPN, encrypted proxy) or anonymous networks (e.g., Tor network). Conventional web honeypots lack an effective way to gather information about an attacker's identity, which raises a big obstacle for cybercrime traceability and forensics. Traditional forensics methods are based on traffic analysis; it requires that defenders gain access to the entire network. It is not suitable for honeypots. In this paper, we present the design, implementation, and deployment of the Micro-Honeypot, which aims to use the browser fingerprinting technique to track a web attacker. Traditional honeypot lure attackers and records attacker's activity. Micro-Honeypot is deployed in a honeypot. It will run and gather identity information when an attacker visits the honeypot. Our preliminary results show that Micro-Honeypot could collect more information and track attackers although they might have used proxies or anonymous networks to hide themselves.
Varshney, G., Bagade, S., Sinha, S..  2018.  Malicious browser extensions: A growing threat: A case study on Google Chrome: Ongoing work in progress. 2018 International Conference on Information Networking (ICOIN). :188–193.

Browser extensions are a way through which third party developers provide a set of additional functionalities on top of the traditional functionalities provided by a browser. It has been identified that the browser extension platform can be used by hackers to carry out attacks of sophisticated kinds. These attacks include phishing, spying, DDoS, email spamming, affiliate fraud, mal-advertising, payment frauds etc. In this paper, we showcase the vulnerability of the current browsers to these attacks by taking Google Chrome as the case study as it is a popular browser. The paper also discusses the technical reason which makes it possible for the attackers to launch such attacks via browser extensions. A set of suggestions and solutions that can thwart the attack possibilities has been discussed.

Sivanesan, A. P., Mathur, A., Javaid, A. Y..  2018.  A Google Chromium Browser Extension for Detecting XSS Attack in HTML5 Based Websites. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0302–0304.

The advent of HTML 5 revives the life of cross-site scripting attack (XSS) in the web. Cross Document Messaging, Local Storage, Attribute Abuse, Input Validation, Inline Multimedia and SVG emerge as likely targets for serious threats. Introduction of various new tags and attributes can be potentially manipulated to exploit the data on a dynamic website. The XSS attack manages to retain a spot in all the OWASP Top 10 security risks released over the past decade and placed in the seventh spot in OWASP Top 10 of 2017. It is known that XSS attempts to execute scripts with untrusted data without proper validation between websites. XSS executes scripts in the victim's browser which can hijack user sessions, deface websites, or redirect the user to the malicious site. This paper focuses on the development of a browser extension for the popular Google Chromium browser that keeps track of various attack vectors. These vectors primarily include tags and attributes of HTML 5 that may be used maliciously. The developed plugin alerts users whenever a possibility of XSS attack is discovered when a user accesses a particular website.

2018-12-10
Ndichu, S., Ozawa, S., Misu, T., Okada, K..  2018.  A Machine Learning Approach to Malicious JavaScript Detection using Fixed Length Vector Representation. 2018 International Joint Conference on Neural Networks (IJCNN). :1–8.

To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of browsers and plugin software, and attack visitors of a web site unknowingly. To protect users from such threads, the development of an accurate detection system for malicious JS is soliciting. Conventional approaches often employ signature and heuristic-based methods, which are prone to suffer from zero-day attacks, i.e., causing many false negatives and/or false positives. For this problem, this paper adopts a machine-learning approach to feature learning called Doc2Vec, which is a neural network model that can learn context information of texts. The extracted features are given to a classifier model (e.g., SVM and neural networks) and it judges the maliciousness of a JS code. In the performance evaluation, we use the D3M Dataset (Drive-by-Download Data by Marionette) for malicious JS codes and JSUPACK for benign ones for both training and test purposes. We then compare the performance to other feature learning methods. Our experimental results show that the proposed Doc2Vec features provide better accuracy and fast classification in malicious JS code detection compared to conventional approaches.

2018-11-19
Carlin, D., O'Kane, P., Sezer, S., Burgess, J..  2018.  Detecting Cryptomining Using Dynamic Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.

With the rise in worth and popularity of cryptocurrencies, a new opportunity for criminal gain is being exploited and with little currently offered in the way of defence. The cost of mining (i.e., earning cryptocurrency through CPU-intensive calculations that underpin the blockchain technology) can be prohibitively expensive, with hardware costs and electrical overheads previously offering a loss compared to the cryptocurrency gained. Off-loading these costs along a distributed network of machines via malware offers an instantly profitable scenario, though standard Anti-virus (AV) products offer some defences against file-based threats. However, newer fileless malicious attacks, occurring through the browser on seemingly legitimate websites, can easily evade detection and surreptitiously engage the victim machine in computationally-expensive cryptomining (cryptojacking). With no current academic literature on the dynamic opcode analysis of cryptomining, to the best of our knowledge, we present the first such experimental study. Indeed, this is the first such work presenting opcode analysis on non-executable files. Our results show that browser-based cryptomining within our dataset can be detected by dynamic opcode analysis, with accuracies of up to 100%. Further to this, our model can distinguish between cryptomining sites, weaponized benign sites, de-weaponized cryptomining sites and real world benign sites. As it is process-based, our technique offers an opportunity to rapidly detect, prevent and mitigate such attacks, a novel contribution which should encourage further future work.

Eskandari, S., Leoutsarakos, A., Mursch, T., Clark, J..  2018.  A First Look at Browser-Based Cryptojacking. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :58–66.

In this paper, we examine the recent trend to- wards in-browser mining of cryptocurrencies; in particular, the mining of Monero through Coinhive and similar code- bases. In this model, a user visiting a website will download a JavaScript code that executes client-side in her browser, mines a cryptocurrency - typically without her consent or knowledge - and pays out the seigniorage to the website. Websites may consciously employ this as an alternative or to supplement advertisement revenue, may offer premium content in exchange for mining, or may be unwittingly serving the code as a result of a breach (in which case the seigniorage is collected by the attacker). The cryptocurrency Monero is preferred seemingly for its unfriendliness to large-scale ASIC mining that would drive browser-based efforts out of the market, as well as for its purported privacy features. In this paper, we survey this landscape, conduct some measurements to establish its prevalence and profitability, outline an ethical framework for considering whether it should be classified as an attack or business opportunity, and make suggestions for the detection, mitigation and/or prevention of browser-based mining for non- consenting users.

2018-09-28
Kim, H., Yoon, J. I., Jang, Y., Park, S..  2017.  Design of heterogeneous integrated digital signature system for ensuring platform independence. 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). :1–4.

Recently, digital transactions in real estate, insurance, etc. have become popular, and researchers are actively studying digital signatures as a method for distinguishing individuals. However, existing digital signature systems have different methods for making signatures depending on the platform and device, and because they are used on platforms owned by corporations, they have the disadvantage of being highly platform-dependent and having low software extensibility. Therefore, in this paper we have analyzed existing digital signature systems and designed a heterogeneous integrated digital signature system which has per-user contract management features and can guarantee platform independence and increase the ease of software extension and maintenance by using a browser environment.

2018-09-12
Rahayuda, I. G. S., Santiari, N. P. L..  2017.  Crawling and cluster hidden web using crawler framework and fuzzy-KNN. 2017 5th International Conference on Cyber and IT Service Management (CITSM). :1–7.
Today almost everyone is using internet for daily activities. Whether it's for social, academic, work or business. But only a few of us are aware that internet generally we access only a small part of the overall of internet access. The Internet or the world wide web is divided into several levels, such as web surfaces, deep web or dark web. Accessing internet into deep or dark web is a dangerous thing. This research will be conducted with research on web content and deep content. For a faster and safer search, in this research will be use crawler framework. From the search process will be obtained various kinds of data to be stored into the database. The database classification process will be implemented to know the level of the website. The classification process is done by using the fuzzy-KNN method. The fuzzy-KNN method classifies the results of the crawling framework that contained in the database. Crawling framework will generate data in the form of url address, page info and other. Crawling data will be compared with predefined sample data. The classification result of fuzzy-KNN will result in the data of the web level based on the value of the word specified in the sample data. From the research conducted on several data tests that found there are as much as 20% of the web surface, 7.5% web bergie, 20% deep web, 22.5% charter and 30% dark web. Research is only done on some test data, it is necessary to add some data in order to get better result. Better crawler frameworks can speed up crawling results, especially at certain web levels because not all crawler frameworks can work at a particular web level, the tor browser's can be used but the crawler framework sometimes can not work.
2018-06-07
Larisch, J., Choffnes, D., Levin, D., Maggs, B. M., Mislove, A., Wilson, C..  2017.  CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. 2017 IEEE Symposium on Security and Privacy (SP). :539–556.

Currently, no major browser fully checks for TLS/SSL certificate revocations. This is largely due to the fact that the deployed mechanisms for disseminating revocations (CRLs, OCSP, OCSP Stapling, CRLSet, and OneCRL) are each either incomplete, insecure, inefficient, slow to update, not private, or some combination thereof. In this paper, we present CRLite, an efficient and easily-deployable system for proactively pushing all TLS certificate revocations to browsers. CRLite servers aggregate revocation information for all known, valid TLS certificates on the web, and store them in a space-efficient filter cascade data structure. Browsers periodically download and use this data to check for revocations of observed certificates in real-time. CRLite does not require any additional trust beyond the existing PKI, and it allows clients to adopt a fail-closed security posture even in the face of network errors or attacks that make revocation information temporarily unavailable. We present a prototype of name that processes TLS certificates gathered by Rapid7, the University of Michigan, and Google's Certificate Transparency on the server-side, with a Firefox extension on the client-side. Comparing CRLite to an idealized browser that performs correct CRL/OCSP checking, we show that CRLite reduces latency and eliminates privacy concerns. Moreover, CRLite has low bandwidth costs: it can represent all certificates with an initial download of 10 MB (less than 1 byte per revocation) followed by daily updates of 580 KB on average. Taken together, our results demonstrate that complete TLS/SSL revocation checking is within reach for all clients.

Chariton, A. A., Degkleri, E., Papadopoulos, P., Ilia, P., Markatos, E. P..  2017.  CCSP: A compressed certificate status protocol. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Trust in SSL-based communications is provided by Certificate Authorities (CAs) in the form of signed certificates. Checking the validity of a certificate involves three steps: (i) checking its expiration date, (ii) verifying its signature, and (iii) ensuring that it is not revoked. Currently, such certificate revocation checks are done either via Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP) servers. Unfortunately, despite the existence of these revocation checks, sophisticated cyber-attackers, may trick web browsers to trust a revoked certificate, believing that it is still valid. Consequently, the web browser will communicate (over TLS) with web servers controlled by cyber-attackers. Although frequently updated, nonced, and timestamped certificates may reduce the frequency and impact of such cyber-attacks, they impose a very large overhead to the CAs and OCSP servers, which now need to timestamp and sign on a regular basis all the responses, for every certificate they have issued, resulting in a very high overhead. To mitigate this overhead and provide a solution to the described cyber-attacks, we present CCSP: a new approach to provide timely information regarding the status of certificates, which capitalizes on a newly introduced notion called signed collections. In this paper, we present the design, preliminary implementation, and evaluation of CCSP in general, and signed collections in particular. Our preliminary results suggest that CCSP (i) reduces space requirements by more than an order of magnitude, (ii) lowers the number of signatures required by 6 orders of magnitude compared to OCSP-based methods, and (iii) adds only a few milliseconds of overhead in the overall user latency.