Visible to the public Biblio

Filters: Keyword is Image color analysis  [Clear All Filters]
2023-06-29
Sahib, Ihsan, AlAsady, Tawfiq Abd Alkhaliq.  2022.  Deep fake Image Detection based on Modified minimized Xception Net and DenseNet. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :355–360.

This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.

ISSN: 2831-753X

2023-06-22
Awasthi, Divyanshu, Srivastava, Vinay Kumar.  2022.  Dual Image Watermarking using Hessenberg decomposition and RDWT-DCT-SVD in YCbCr color space. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :1–6.
A dual-image watermarking approach is presented in this research. The presented work utilizes the properties of Hessenberg decomposition, Redundant discrete wavelet transform (RDWT), Discrete cosine transform (DCT) and Singular value decomposition (SVD). For watermarking, the YCbCr color space is employed. Two watermark logos are for embedding. A YCbCr format conversion is performed on the RGB input image. The host image's Y and Cb components are divided into various sub-bands using RDWT. The Hessenberg decomposition is applied on high-low and low-high components. After that, SVD is applied to get dominant matrices. Two different logos are used for watermarking. Apply RDWT on both watermark images. After that, apply DCT and SVD to get dominant matrices of logos. Add dominant matrices of input host and watermark images to get the watermarked image. Average PSNR, MSE, Structural similarity index measurement (SSIM) and Normalized correlation coefficient (NCC) are used as the performance parameters. The resilience of the presented work is tested against various attacks such as Gaussian low pass filter, Speckle noise attack, Salt and Pepper, Gaussian noise, Rotation, Median and Average filter, Sharpening, Histogram equalization and JPEG compression. The presented scheme is robust and imperceptible when compared with other schemes.
2023-03-17
Ayoub, Harith Ghanim.  2022.  Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
2023-02-17
Irraivan, Ezilaan, Phang, Swee King.  2022.  Development of a Two-Factor Authentication System for Enhanced Security of Vehicles at a Carpark. 2022 International Conference on Electrical and Information Technology (IEIT). :35–39.
The increasing number of vehicles registered demands for safe and secure carparks due to increase in vehicle theft. The current Automatic Number Plate Recognition (ANPR) systems is a single authentication system and hence it is not secure. Therefore, this research has developed a double authentication system by combing ANPR with a Quick Response (QR) code system to create ANPR-DAS that improves the security at a carpark. It has yielded an accuracy of up to 93% and prevents car theft at a car park.
2023-02-03
Sadek, Mennatallah M., Khalifa, Amal, Khafga, Doaa.  2022.  An enhanced Skin-tone Block-map Image Steganography using Integer Wavelet Transforms. 2022 5th International Conference on Computing and Informatics (ICCI). :378–384.
Steganography is the technique of hiding a confidential message in an ordinary message where the extraction of embedded information is done at its destination. Among the different carrier files formats; digital images are the most popular. This paper presents a Wavelet-based method for hiding secret information in digital images where skin areas are identified and used as a region of interest. The work presented here is an extension of a method published earlier by the authors that utilized a rule-based approach to detect skin regions. The proposed method, proposed embedding the secret data into the integer Wavelet coefficients of the approximation sub-band of the cover image. When compared to the original technique, experimental results showed a lower error percentage between skin maps detected before the embedding and during the extraction processes. This eventually increased the similarity between the original and the retrieved secret image.
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
2022-11-02
Agarwal, Samaksh, Girdhar, Nancy, Raghav, Himanshu.  2021.  A Novel Neural Model based Framework for Detection of GAN Generated Fake Images. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :46–51.
With the advancement in Generative Adversarial Networks (GAN), it has become easier than ever to generate fake images. These images are more realistic and non-discernible by untrained eyes and can be used to propagate fake information on the Internet. In this paper, we propose a novel method to detect GAN generated fake images by using a combination of frequency spectrum of image and deep learning. We apply Discrete Fourier Transform to each of 3 color channels of the image to obtain its frequency spectrum which shows if the image has been upsampled, a common trend in most GANs, and then train a Capsule Network model with it. Conducting experiments on a dataset of almost 1000 images based on Unconditional data modeling (StyleGan2 - ADA) gave results indicating that the model is promising with accuracy over 99% when trained on the state-of-the-art GAN model. In theory, our model should give decent results when trained with one dataset and tested on another.
2022-10-20
Varma, Dheeraj, Mishra, Shikhar, Meenpal, Ankita.  2020.  An Adaptive Image Steganographic Scheme Using Convolutional Neural Network and Dual-Tree Complex Wavelet Transform. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
The technique of concealing a confidential information in a carrier information is known as steganography. When we use digital images as carriers, it is termed as image steganography. The advancements in digital technology and the need for information security have given great significance for image steganographic methods in the area of secured communication. An efficient steganographic system is characterized by a good trade-off between its features such as imperceptibility and capacity. The proposed scheme implements an edge-detection based adaptive steganography with transform domain embedding, offering high imperceptibility and capacity. The scheme employs an adaptive embedding technique to select optimal data-hiding regions in carrier image, using Canny edge detection and a Convolutional Neural Network (CNN). Then, the secret image is embedded in the Dual-Tree Complex Wavelet Transform (DTCWT) coefficients of the selected carrier image blocks, with the help of Singular Value Decomposition (SVD). The analysis of the scheme is performed using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC).
2022-08-26
Francisco, Hernandez Muñoz Urian, Ríos-Moreno, G.J..  2021.  Controller of public vehicles and traffic lights to speed up the response time to emergencies. 2021 XVII International Engineering Congress (CONIIN). :1–6.
Frequently emergency services are required nationally and globally, in Mexico during 2020 of the 16,22,879 calls made to 911, statistics reveal that 58.43% were about security, 16.57% assistance, 13.49% medical, 6.29% civil protection, among others. However, the constant traffic of cities generates delays in the time of arrival to medical, military or civil protection services, wasting time that can be critical in an emergency. The objective is to create a connection between the road infrastructure (traffic lights) and emergency vehicles to reduce waiting time as a vehicle on a mission passes through a traffic light with Controller Area Network CAN controller to modify the color and give way to the emergency vehicle that will send signals to the traffic light controller through a controller located in the car. For this, the Controller Area Network Flexible Data (CAN-FD) controllers will be used in traffic lights since it is capable of synchronizing data in the same bus or cable to avoid that two messages arrive at the same time, which could end in car accidents if they are not it respects a hierarchy and the CANblue ll controller that wirelessly connects devices (vehicle and traffic light) at a speed of 1 Mbit / s to avoid delays in data exchange taking into account the high speeds that a car can acquire. It is intended to use the CAN controller for the development of improvements in response times in high-speed data exchange in cities with high traffic flow. As a result of the use of CAN controllers, a better data flow and interconnection is obtained.
2022-08-10
Song, Zhenlin, Sun, Linyun.  2021.  Comparing Performance and Efficiency of Designers and Design Intelligence. 2021 14th International Symposium on Computational Intelligence and Design (ISCID). :57—60.
Intelligent design has been an emerging important area in the design. Existing works related to intelligent design use objective indicators to measure the quality of AI design by comparing the differences between AI-generated data and real data. However, the level of quality and efficiency of intelligent design compared to human designers remains unclear. We conducted user experiments to compare the design quality and efficiency of advanced design methods with that of junior designers. The conclusion is advanced intelligent design methods are comparable with junior designers on painting. Besides, intelligent design uses only 10% of the time spent by the junior designer in the tasks of layout design, color matching, and video editing.
2022-07-14
Jiang, Qingwei.  2021.  An Image Hiding Algorithm based on Bit Plane and Two-Dimensional Code. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :851–854.
An image hiding algorithm based on bit plane and two-dimensional code is proposed in this paper. The main characteristic of information hiding is to use the information redundant data of the existing image, to embed the information into these redundant data by the information hiding algorithm, or to partially replace redundant information with information to be embedded to achieve a visual invisible purpose. We first analyze the color index usage frequency of the block index matrix in the algorithm, and calculate the distance between the color of the block index matrix with only one color and the other color in the palette that is closest to the color. Then, the QR model and the compression model are applied to improve the efficiency. We compare the proposed model with the stateof-the-art models.
Nagata, Daiya, Hayashi, Yu-ichi, Mizuki, Takaaki, Sone, Hideaki.  2021.  QR Bar-Code Designed Resistant against EM Information Leakage. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–4.
A threat of eavesdropping display screen image of information device is caused by unintended EM leakage emanation. QR bar-code is capable of error correction, and its information is possibly read from a damaged screen image from EM leakage. A new design of QR bar-code proposed in this paper uses selected colors in consideration of correlation between the EM wave leakage and display color. Proposed design of QR bar-code keeps error correction of displayed image, and makes it difficult to read information on the eavesdropped image.
2022-06-30
Dou, Zhongchen.  2021.  The Text Captcha Solver: A Convolutional Recurrent Neural Network-Based Approach. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :273—283.
Although several different attacks or modern security mechanisms have been proposed, the captchas created by the numbers and the letters are still used by some websites or applications to protect their information security. The reason is that the labels of the captcha data are difficult to collect for the attacker, and protector can easily control the various parameters of the captchas: like the noise, the font type, the font size, and the background color, then make this security mechanism update with the increased attack methods. It can against attacks in different situations very effectively. This paper presents a method to recognize the different text-based captchas based on a system constituted by the denoising autoencoder and the Convolutional Recurrent Neural Network (CRNN) model with the Connectionist Temporal Classification (CTC) structure. We show that our approach has a better performance for recognizing, and it solves the identification problem of indefinite character length captchas efficiently.
2022-05-05
Vishwakarma, Seema, Gupta, Neetesh Kumar.  2021.  An Efficient Color Image Security Technique for IOT using Fast RSA Encryption Technique. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :717—722.
Implementing the color images encryption is a challenging field of the research for IOT applications. An exponential growth in imaging cameras in IOT uses makes it critical to design the robust image security algorithms. It is also observed that performance of existing encryption methods degrades under the presence of noisy environments. This is the major concern of evaluating the encryption method in this paper. The prime concern of this paper is to design the fast efficient color images encryption algorithm by designing an efficient and robustness RSA encryption algorithm. Method takes the advantage of both preprocessing and the Gaussian pyramid (GP) approach for encryption. To improve the performance it is proposed to use the LAB color space and implement the RSA encryption on luminance (L) component using the GP domain. The median filter and image sharpening is used for preprocessing. The goal is to improve the performance under highly noisy imaging environment. The performance is compared based on the crypto weights and on the basis of visual artifacts and entropy analysis. The decrypted outputs are again converted to color image output. Using the LAB color space is expected to improve the entropy performance of the image. Result of proposed encryption method is evaluated under the different types of the noisy attacks over the color images and also performance is compared with state of art encryption methods. Significant improvement speed of the algorithm is compared in terms of the elapsed time
2022-03-09
Jia, Ning, Gong, Xiaoyi, Zhang, Qiao.  2021.  Improvement of Style Transfer Algorithm based on Neural Network. 2021 International Conference on Computer Engineering and Application (ICCEA). :1—6.
In recent years, the application of style transfer has become more and more widespread. Traditional deep learning-based style transfer networks often have problems such as image distortion, loss of detailed information, partial content disappearance, and transfer errors. The style transfer network based on deep learning that we propose in this article is aimed at dealing with these problems. Our method uses image edge information fusion and semantic segmentation technology to constrain the image structure before and after the migration, so that the converted image maintains structural consistency and integrity. We have verified that this method can successfully suppress image conversion distortion in most scenarios, and can generate good results.
Park, Byung H., Chattopadhyay, Somrita, Burgin, John.  2021.  Haze Mitigation in High-Resolution Satellite Imagery Using Enhanced Style-Transfer Neural Network and Normalization Across Multiple GPUs. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :2827—2830.
Despite recent advances in deep learning approaches, haze mitigation in large satellite images is still a challenging problem. Due to amorphous nature of haze, object detection or image segmentation approaches are not applicable. Also it is practically infeasible to obtain ground truths for training. Bounded memory capacity of GPUs is another constraint that limits the size of image to be processed. In this paper, we propose a style transfer based neural network approach to mitigate haze in a large overhead imagery. The network is trained without paired ground truths; further, perception loss is added to restore vivid colors, enhance contrast and minimize artifacts. The paper also illustrates our use of multiple GPUs in a collective way to produce a single coherent clear image where each GPU dehazes different portions of a large hazy image.
2021-12-20
Ma, Chiyuan, Zuo, Yi, CHEN, C.L.Philip, Li, Tieshan.  2021.  A Weight-Adaptive Algorithm of Multi Feature Fusion Based on Kernel Correlation Filtering for Target Tracking. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :274–279.
In most correlation filter target tracking algorithms, poor accuracy in the tracking process for complex field images of the target and scale change problems. To address these issues, this paper proposes an algorithm of adaptive multi-feature fusion with scale change correlation filtering tracking. Our algorithm is based on the rapid and simple Kernel-Correlated Filtering(K CF) tracker, and achieves the complementarity among image features by fusing multiple features of Color Nmae(CN), Histogram of Oriented Gradient(HOG) and Local Binary Pattern(LBP) with weights adjusted by visual evaluation functions. The proposed algorithm introduces scale pooling and bilinear interpolation to adjust the target template size. Experiments on the OTB-2015 dataset of 100 video frames are compared with several trackers, and the precision and success ratio of our algorithm on complex scene tracking problems are 17.7% and 32.1 % respectively compared to the based-KCF.
2021-09-30
Gambhir, Gaurav, Mandal, Jyotsna Kumar.  2020.  Multi-Core Implementation of Chaotic RGB-LSB Steganography Technique. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :496–500.
The paper presents shared memory implementation of chaotic RGB LSB steganography technique, The proposed technique involves hiding the secret information into RGB components of the cover image. Chaotic logistic map has been used to generate highly random numbers for enhancing the security of embedded information. Encryption and decryption process is parallelized using OpenMP API in multicore environment, and results show significant speed up and highly scalable results even with large amount of data.
2021-02-08
Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

Pramanik, S., Bandyopadhyay, S. K., Ghosh, R..  2020.  Signature Image Hiding in Color Image using Steganography and Cryptography based on Digital Signature Concepts. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :665–669.
Data Transmission in network security is one of the most vital issues in today's communication world. The outcome of the suggested method is outlined over here. Enhanced security can be achieved by this method. The vigorous growth in the field of information communication has made information transmission much easier. But this type of advancement has opened up many possibilities of information being snooped. So, day-by-day maintaining of information security is becoming an inseparable part of computing and communication. In this paper, the authors have explored techniques that blend cryptography & steganography together. In steganography, information is kept hidden behind a cover image. In this paper, approaches for information hiding using both cryptography & steganography is proposed keeping in mind two considerations - size of the encrypted object and degree of security. Here, signature image information is kept hidden into cover image using private key of sender & receiver, which extracts the information from stego image using a public key. This approach can be used for message authentication, message integrity & non-repudiation purpose.
2021-01-25
Abusukhon, A., AlZu’bi, S..  2020.  New Direction of Cryptography: A Review on Text-to-Image Encryption Algorithms Based on RGB Color Value. 2020 Seventh International Conference on Software Defined Systems (SDS). :235–239.
Data encryption techniques are important for answering the question: How secure is the Internet for sending sensitive data. Keeping data secure while they are sent through the global network is a difficult task. This is because many hackers are fishing these data in order to get some benefits. The researchers have developed various types of encryption algorithms to protect data from attackers. These algorithms are mainly classified into two categories namely symmetric and asymmetric encryption algorithms. This survey sheds light on the recent work carried out on encrypting a text into an image based on the RGB color value and held a comparison between them based on various factors evolved from the literature.
2021-01-18
Molek, V., Hurtik, P..  2020.  Training Neural Network Over Encrypted Data. 2020 IEEE Third International Conference on Data Stream Mining Processing (DSMP). :23–27.
We are answering the question whenever systems with convolutional neural network classifier trained over plain and encrypted data keep the ordering according to accuracy. Our motivation is need for designing convolutional neural network classifiers when data in their plain form are not accessible because of private company policy or sensitive data gathered by police. We propose to use a combination of fully connected autoencoder together with a convolutional neural network classifier. The autoencoder transforms the data info form that allows the convolutional classifier to be trained. We present three experiments that show the ordering of systems over plain and encrypted data. The results show that the systems indeed keep the ordering, and thus a NN designer can select appropriate architecture over encrypted data and later let data owner train or fine-tune the system/CNN classifier on the plain data.
2021-01-15
Akhtar, Z., Dasgupta, D..  2019.  A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.
The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S..  2020.  Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3204—3213.
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for datasets of DeepFake videos. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
2020-12-11
Zhou, Z., Yang, Y., Cai, Z., Yang, Y., Lin, L..  2019.  Combined Layer GAN for Image Style Transfer*. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM). :1—3.

Image style transfer is an increasingly interesting topic in computer vision where the goal is to map images from one style to another. In this paper, we propose a new framework called Combined Layer GAN as a solution of dealing with image style transfer problem. Specifically, the edge-constraint and color-constraint are proposed and explored in the GAN based image translation method to improve the performance. The motivation of the work is that color and edge are fundamental vision factors for an image, while in the traditional deep network based approach, there is a lack of fine control of these factors in the process of translation and the performance is degraded consequently. Our experiments and evaluations show that our novel method with the edge and color constrains is more stable, and significantly improves the performance compared with the traditional methods.