Visible to the public Biblio

Filters: Keyword is Image color analysis  [Clear All Filters]
2018-01-23
Fasila, K. A..  2017.  Automated DNA encryption algorithm based on UNICODE and colors. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–4.

Cellular Automata based computing paradigm is an efficient platform for modeling complicated computational problems. This can be used for various applications in the field of Cryptography. In this paper, it is used for generating a DNA cryptography based encryption algorithm. The encoded message in binary format is encrypted to cipher colors with the help of a simple algorithm based on the principles of DNA cryptography and cellular automata. The message will be in compressed form using XOR operator. Since cellular automata and DNA cryptographic principles are exploited, high level of parallelism, reversibility, uniformity etc. can be achieved.

2017-12-27
Kar, N., Aman, M. A. A. A., Mandal, K., Bhattacharya, B..  2017.  Chaos-based video steganography. 2017 8th International Conference on Information Technology (ICIT). :482–487.

In this paper a novel data hiding method has been proposed which is based on Non-Linear Feedback Shift Register and Tinkerbell 2D chaotic map. So far, the major work in Steganography using chaotic map has been confined to image steganography where significant restrictions are there to increase payload. In our work, 2D chaotic map and NLFSR are used to developed a video steganography mechanism where data will be embedded in the segregated frames. This will increase the data hiding limit exponentially. Also, embedding position of each frame will be different from others frames which will increase the overall security of the proposed mechanism. We have achieved this randomized data hiding points by using a chaotic map. Basically, Chaotic theory which is non-linear dynamics physics is using in this era in the field of Cryptography and Steganography and because of this theory, little bit changes in initial condition makes the output totally different. So, it is very hard to get embedding position of data without knowing the initial value of the chaotic map.

Ye, Z., Yin, H., Ye, Y..  2017.  Information security analysis of deterministic encryption and chaotic encryption in spatial domain and frequency domain. 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). :1–6.

Information security is crucial to data storage and transmission, which is necessary to protect information under various hostile environments. Cryptography serves as a major element to ensure confidentiality in both communication and information technology, where the encryption and decryption schemes are implemented to scramble the pure plaintext and descramble the secret ciphertext using security keys. There are two dominating types of encryption schemes: deterministic encryption and chaotic encryption. Encryption and decryption can be conducted in either spatial domain or frequency domain. To ensure secure transmission of digital information, comparisons on merits and drawbacks of two practical encryption schemes are conducted, where case studies on the true color digital image encryption are presented. Both deterministic encryption in spatial domain and chaotic encryption in frequency domain are analyzed in context, as well as the information integrity after decryption.

2017-12-20
Azakami, T., Shibata, C., Uda, R..  2017.  Challenge to Impede Deep Learning against CAPTCHA with Ergonomic Design. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 1:637–642.

Once we had tried to propose an unbreakable CAPTCHA and we reached a result that limitation of time is effect to prevent computers from recognizing characters accurately while computers can finally recognize all text-based CAPTCHA in unlimited time. One of the existing usual ways to prevent computers from recognizing characters is distortion, and adding noise is also effective for the prevention. However, these kinds of prevention also make recognition of characters by human beings difficult. As a solution of the problems, an effective text-based CAPTCHA algorithm with amodal completion was proposed by our team. Our CAPTCHA causes computers a large amount of calculation costs while amodal completion helps human beings to recognize characters momentarily. Our CAPTCHA has evolved with aftereffects and combinations of complementary colors. We evaluated our CAPTCHA with deep learning which is attracting the most attention since deep learning is faster and more accurate than existing methods for recognition with computers. In this paper, we add jagged lines to edges of characters since edges are one of the most important parts for recognition in deep learning. In this paper, we also evaluate that how much the jagged lines decrease recognition of human beings and how much they prevent computers from the recognition. We confirm the effects of our method to deep learning.

2017-03-08
Mali, Y. K., Mohanpurkar, A..  2015.  Advanced pin entry method by resisting shoulder surfing attacks. 2015 International Conference on Information Processing (ICIP). :37–42.

The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.

Sato, J., Akashi, T..  2015.  Evolutionary multi-view face tracking on pixel replaced image in video sequence. 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR). :322–327.

Nowadays, many computer vision techniques are applied to practical applications, such as surveillance and facial recognition systems. Some of such applications focus on information extraction from the human beings. However, people may feel psychological stress about recording their personal information, such as a face, behavior, and cloth. Therefore, privacy protection of the images and videos is necessary. Specifically, the detection and tracking methods should be used on the privacy protected images. For this purpose, there are some easy methods, such as blurring and pixelating, and they are often used in news programs etc. Because such methods just average pixel values, no important feature for the detection and tracking is left. Hence, the preprocessed images are unuseful. In order to solve this problem, we have proposed shuffle filter and a multi-view face tracking method with a genetic algorithm (GA). The filter protects the privacy by changing pixel locations, and the color information can be preserved. Since the color information is left, the tracking can be achieved by a basic template matching with histogram. Moreover, by using GA instead of sliding window when the subject in the image is searched, it can search more efficiently. However, the tracking accuracy is still low and the preprocessing time is large. Therefore, improving them is the purpose in this research. In the experiment, the improved method is compared with our previous work, CAMSHIFT, an online learning method, and a face detector. The results indicate that the accuracy of the proposed method is higher than the others.

Prinosil, J., Krupka, A., Riha, K., Dutta, M. K., Singh, A..  2015.  Automatic hair color de-identification. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :732–736.

A process of de-identification used for privacy protection in multimedia content should be applied not only for primary biometric traits (face, voice) but for soft biometric traits as well. This paper deals with a proposal of the automatic hair color de-identification method working with video records. The method involves image hair area segmentation, basic hair color recognition, and modification of hair color for real-looking de-identified images.

Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.

Lee, K., Kolsch, M..  2015.  Shot Boundary Detection with Graph Theory Using Keypoint Features and Color Histograms. 2015 IEEE Winter Conference on Applications of Computer Vision. :1177–1184.

The TRECVID report of 2010 [14] evaluated video shot boundary detectors as achieving "excellent performance on [hard] cuts and gradual transitions." Unfortunately, while re-evaluating the state of the art of the shot boundary detection, we found that they need to be improved because the characteristics of consumer-produced videos have changed significantly since the introduction of mobile gadgets, such as smartphones, tablets and outdoor activity purposed cameras, and video editing software has been evolving rapidly. In this paper, we evaluate the best-known approach on a contemporary, publicly accessible corpus, and present a method that achieves better performance, particularly on soft transitions. Our method combines color histograms with key point feature matching to extract comprehensive frame information. Two similarity metrics, one for individual frames and one for sets of frames, are defined based on graph cuts. These metrics are formed into temporal feature vectors on which a SVM is trained to perform the final segmentation. The evaluation on said "modern" corpus of relatively short videos yields a performance of 92% recall (at 89% precision) overall, compared to 69% (91%) of the best-known method.

Behjat-Jamal, S., Demirci, R., Rahkar-Farshi, T..  2015.  Hybrid bilateral filter. 2015 International Symposium on Computer Science and Software Engineering (CSSE). :1–6.

A variety of methods for images noise reduction has been developed so far. Most of them successfully remove noise but their edge preserving capabilities are weak. Therefore bilateral image filter is helpful to deal with this problem. Nevertheless, their performances depend on spatial and photometric parameters which are chosen by user. Conventionally, the geometric weight is calculated by means of distance of neighboring pixels and the photometric weight is calculated by means of color components of neighboring pixels. The range of weights is between zero and one. In this paper, geometric weights are estimated by fuzzy metrics and photometric weights are estimated by using fuzzy rule based system which does not require any predefined parameter. Experimental results of conventional, fuzzy bilateral filter and proposed approach have been included.

2017-02-23
S. Goyal, M. Ramaiya, D. Dubey.  2015.  "Improved Detection of 1-2-4 LSB Steganography and RSA Cryptography in Color and Grayscale Images". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1120-1124.

Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.

2017-02-14
B. C. M. Cappers, J. J. van Wijk.  2015.  "SNAPS: Semantic network traffic analysis through projection and selection". 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). :1-8.

Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.

S. Pund-Dange, C. G. Desai.  2015.  "Secured data communication system using RSA with mersenne primes and Steganography". 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1306-1310.

To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.

2015-05-05
Vantigodi, S., Babu, R.V..  2014.  Entropy constrained exemplar-based image inpainting. Signal Processing and Communications (SPCOM), 2014 International Conference on. :1-5.

Image inpainting is the process of filling the unwanted region in an image marked by the user. It is used for restoring old paintings and photographs, removal of red eyes from pictures, etc. In this paper, we propose an efficient inpainting algorithm which takes care of false edge propagation. We use the classical exemplar based technique to find out the priority term for each patch. To ensure that the edge content of the nearest neighbor patch found by minimizing L2 distance between patches, we impose an additional constraint that the entropy of the patches be similar. Entropy of the patch acts as a good measure of edge content. Additionally, we fill the image by considering overlapping patches to ensure smoothness in the output. We use structural similarity index as the measure of similarity between ground truth and inpainted image. The results of the proposed approach on a number of examples on real and synthetic images show the effectiveness of our algorithm in removing objects and thin scratches or text written on image. It is also shown that the proposed approach is robust to the shape of the manually selected target. Our results compare favorably to those obtained by existing techniques.
 

2015-05-01
Woon Cho, Abidi, M.A., Kyungwon Jeong, Nahyun Kim, Seungwon Lee, Joonki Paik, Gwang-Gook Lee.  2014.  Object retrieval using scene normalized human model for video surveillance system. Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on. :1-2.

This paper presents a human model-based feature extraction method for a video surveillance retrieval system. The proposed method extracts, from a normalized scene, object features such as height, speed, and representative color using a simple human model based on multiple-ellipse. Experimental results show that the proposed system can effectively track moving routes of people such as a missing child, an absconder, and a suspect after events.

2015-04-30
Biedermann, S., Ruppenthal, T., Katzenbeisser, S..  2014.  Data-centric phishing detection based on transparent virtualization technologies. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :215-223.

We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.