Biblio
Through the internet and local networks, IoT devices exchange data. Most of the IoT devices are low-power devices, meaning that they are designed to use less electric power. To secure data transmission, it is required to encrypt the messages. Encryption and decryption of messages are computationally expensive activities, thus require considerable amount of processing and memory power which is not affordable to low-power IoT devices. Therefore, not all secure transmission protocols are low-power IoT devices friendly. This study proposes a secure data transmission protocol for low-power IoT devices. The design inherits some features in Kerberos and onetime password concepts. The protocol is designed for devices which are connected to each other, as in a fully connected network topology. The protocol uses symmetric key cryptography under the assumption of that the device specific keys are never being transmitted over the network. It resists DoS, message replay and Man-of-the-middle attacks while facilitating the key security concepts such as Authenticity, Confidentiality and Integrity. The designed protocol uses less number of encryption/decryption cycles and maintain session based strong authentication to facilitate secure data transmission among nodes.
The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.
The Internet of Things (IoT) is one of the emerging technologies that has seized the attention of researchers, the reason behind that was the IoT expected to be applied in our daily life in the near future and human will be wholly dependent on this technology for comfort and easy life style. Internet of things is the interconnection of internet enabled things or devices to connect with each other and to humans in order to achieve some goals or the ability of everyday objects to connect to the Internet and to send and receive data. However, the Internet of Things (IoT) raises significant challenges that could stand in the way of realizing its potential benefits. This paper discusses access control area as one of the most crucial aspect of security and privacy in IoT and proposing a new way of access control that would decide who is allowed to access what and who is not to the IoT subjects and sensors.
Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.
This paper proposes a framework for predicting and mitigating insider collusion threat in relational database systems. The proposed model provides a robust technique for database architect and administrators to predict insider collusion threat when designing database schema or when granting privileges. Moreover, it proposes a real time monitoring technique that monitors the growing knowledgebases of insiders while executing transactions and the possible collusion insider attacks that may be launched based on insiders accesses and inferences. Furthermore, the paper proposes a mitigating technique based on the segregation of duties principle and the discovered collusion insider threat to mitigate the problem. The proposed model was tested to show its usefulness and applicability.
With the advancement of Technology, the existing electric grids are shifting towards smart grid. The smart grids are meant to be effective in power management, secure and safe in communication and more importantly, it is favourable to the environment. The smart grid is having huge architecture it includes various stakeholders that encounter challenges in the name of authorisation and authentication. The smart grid has another important issue to deal with that is securing the communication from varieties of cyber-attacks. In this paper, we first discussed about the challenges in the smart grid data communication and later we surveyed the existing cryptographic algorithm and presented comparative work on certain factors for existing working cryptographic algorithms This work gives insight conclusion to improve the working scheme for data security and Privacy preservation of customer who is one of the stack holders. Finally, with the comparative work, we suggest a direction of future work on improvement of working algorithms for secure and safe data communication in a smart grid.
Password auditing can enhance the cyber situational awareness of defenders, e.g. cyber security/IT professionals, with regards to the strength of text-based authentication mechanisms utilized in an organization. Auditing results can proactively indicate if weak passwords exist in an organization, decreasing the risks of compromisation. Password cracking is a typical and time-consuming way to perform password auditing. Given that defenders perform password auditing within a specific evaluation timeframe, the cracking process needs to be optimized to yield useful results. Existing password cracking tools do not provide holistic features to optimize the process. Therefore, the need arises to build new password auditing toolkits to assist defenders to achieve their task in an effective and efficient way. Moreover, to maximize the benefits of password auditing, a security policy should be utilized. Currently the efforts focus on the specification of password security policies, providing rules on how to construct passwords. This work proposes the functionality that should be supported by next-generation password auditing toolkits and provides guidelines to drive the specification of a relevant password auditing policy.
The Internet of Things (IoT) holds great potential for productivity, quality control, supply chain efficiencies and overall business operations. However, with this broader connectivity, new vulnerabilities and attack vectors are being introduced, increasing opportunities for systems to be compromised by hackers and targeted attacks. These vulnerabilities pose severe threats to a myriad of IoT applications within areas such as manufacturing, healthcare, power and energy grids, transportation and commercial building management. While embedded OEMs offer technologies, such as hardware Trusted Platform Module (TPM), that deploy strong chain-of-trust and authentication mechanisms, still they struggle to protect against vulnerabilities introduced by vendors and end users, as well as additional threats posed by potential technical vulnerabilities and zero-day attacks. This paper proposes a pro-active policy-based approach, enforcing the principle of least privilege, through hardware Security Policy Engine (SPE) that actively monitors communication of applications and system resources on the system communication bus (ARM AMBA-AXI4). Upon detecting a policy violation, for example, a malicious application accessing protected storage, it counteracts with predefined mitigations to limit the attack. The proposed SPE approach widely complements existing embedded hardware and software security technologies, targeting the mitigation of risks imposed by unknown vulnerabilities of embedded applications and protocols.
Recently, cloud computing is an emerging technology along with big data. Both technologies come together. Due to the enormous size of data in big data, it is impossible to store them in local storage. Alternatively, even we want to store them locally, we have to spend much money to create bit data center. One way to save money is store big data in cloud storage service. Cloud storage service provides users space and security to store the file. However, relying on single cloud storage may cause trouble for the customer. CSP may stop its service anytime. It is too risky if data owner hosts his file only single CSP. Also, the CSP is the third party that user have to trust without verification. After deploying his file to CSP, the user does not know who access his file. Even CSP provides a security mechanism to prevent outsider attack. However, how user ensure that there is no insider attack to steal or corrupt the file. This research proposes the way to minimize the risk, ensure data privacy, also accessing control. The big data file is split into chunks and distributed to multiple cloud storage provider. Even there is insider attack; the attacker gets only part of the file. He cannot reconstruct the whole file. After splitting the file, metadata is generated. Metadata is a place to keep chunk information, includes, chunk locations, access path, username and password of data owner to connect each CSP. Asymmetric security concept is applied to this research. The metadata will be encrypted and transfer to the user who requests to access the file. The file accessing, monitoring, metadata transferring is functions of dew computing which is an intermediate server between the users and cloud service.
Information Centric Networking (ICN) changed the communication model from host-based to content-based to cope with the high volume of traffic due to the rapidly increasing number of users, data objects, devices, and applications. ICN communication model requires new security solutions that will be integrated with ICN architectures. In this paper, we present a security framework to manage ICN traffic by detecting, preventing, and responding to ICN attacks. The framework consists of three components: availability, access control, and privacy. The availability component ensures that contents are available for legitimate users. The access control component allows only legitimate users to get restrictedaccess contents. The privacy component prevents attackers from knowing content popularities or user requests. We also show our specific solutions as examples of the framework components.
Role-Based Access Control (RBAC) is often used in web applications to restrict operations and protect security sensitive information and resources. Web applications regularly undergo maintenance and evolution and their security may be affected by source code changes between releases. To prevent security regression and vulnerabilities, developers have to take re-validation actions before deploying new releases. This may become a significant undertaking, especially when quick and repeated releases are sought. We define protection-impacting changes as those changed statements during evolution that alter privilege protection of some code. We propose an automated method that identifies protection-impacting changes within all changed statements between two versions. The proposed approach compares statically computed security protection models and repository information corresponding to different releases of a system to identify protection-impacting changes. Results of experiments present the occurrence of protection-impacting changes over 210 release pairs of WordPress, a PHP content management web application. First, we show that only 41% of the release pairs present protection-impacting changes. Second, for these affected release pairs, protection-impacting changes can be identified and represent a median of 47.00 lines of code, that is 27.41% of the total changed lines of code. Over all investigated releases in WordPress, protection-impacting changes amounted to 10.89% of changed lines of code. Conversely, an average of about 89% of changed source code have no impact on RBAC security and thus need no re-validation nor investigation. The proposed method reduces the amount of candidate causes of protection changes that developers need to investigate. This information could help developers re-validate application security, identify causes of negative security changes, and perform repairs in a more effective way.
At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.
Secret passwords are very widely used for user authentication to websites, despite their known shortcomings. Most websites using passwords also implement password recovery to allow users to re-establish a shared secret if the existing value is forgotten; many such systems involve sending a password recovery email to the user, e.g. containing a secret link. The security of password recovery, and hence the entire user-website relationship, depends on the email being acted upon correctly; unfortunately, as we show, such emails are not always designed to maximise security and can introduce vulnerabilities into recovery. To understand better this serious practical security problem, we surveyed password recovery emails for 50 of the top English language websites. We investigated a range of security and usability issues for such emails, covering their design, structure and content (including the nature of the user instructions), the techniques used to recover the password, and variations in email content from one web service to another. Many well-known web services, including Facebook, Dropbox, and Microsoft, suffer from recovery email design, structure and content issues. This is, to our knowledge, the first study of its type reported in the literature. This study has enabled us to formulate a set of recommendations for the design of such emails.
Today's emerging Industrial Internet of Things (IIoT) scenarios are characterized by the exchange of data between services across enterprises. Traditional access and usage control mechanisms are only able to determine if data may be used by a subject, but lack an understanding of how it may be used. The ability to control the way how data is processed is however crucial for enterprises to guarantee (and provide evidence of) compliant processing of critical data, as well as for users who need to control if their private data may be analyzed or linked with additional information - a major concern in IoT applications processing personal information. In this paper, we introduce LUCON, a data-centric security policy framework for distributed systems that considers data flows by controlling how messages may be routed across services and how they are combined and processed. LUCON policies prevent information leaks, bind data usage to obligations, and enforce data flows across services. Policy enforcement is based on a dynamic taint analysis at runtime and an upfront static verification of message routes against policies. We discuss the semantics of these two complementing enforcement models and illustrate how LUCON policies are compiled from a simple policy language into a first-order logic representation. We demonstrate the practical application of LUCON in a real-world IoT middleware and discuss its integration into Apache Camel. Finally, we evaluate the runtime impact of LUCON and discuss performance and scalability aspects.
The development of a robust strategy for network security is reliant upon a combination of in-house expertise and for completeness attack vectors used by attackers. A honeypot is one of the most popular mechanisms used to gather information about attacks and attackers. However, low-interaction honeypots only emulate an operating system and services, and are more prone to a fingerprinting attack, resulting in severe consequences such as revealing the identity of the honeypot and thus ending the usefulness of the honeypot forever, or worse, enabling it to be converted into a bot used to attack others. A number of tools and techniques are available both to fingerprint low-interaction honeypots and to defend against such fingerprinting; however, there is an absence of fingerprinting techniques to identify the characteristics and behaviours that indicate fingerprinting is occurring. Therefore, this paper proposes a fuzzy technique to correlate the attack actions and predict the probability that an attack is a fingerprinting attack on the honeypot. Initially, an experimental assessment of the fingerprinting attack on the low- interaction honeypot is performed, and a fingerprinting detection mechanism is proposed that includes the underlying principles of popular fingerprinting attack tools. This implementation is based on a popular and commercially available low-interaction honeypot for Windows - KFSensor. However, the proposed fuzzy technique is a general technique and can be used with any low-interaction honeypot to aid in the identification of the fingerprinting attack whilst it is occurring; thus protecting the honeypot from the fingerprinting attack and extending its life.
In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.
Smart Grid (SG) technology has been developing for years, which facilitates users with portable access to power through being applied in numerous application scenarios, one of which is the electric vehicle charging. In order to ensure the security of the charging process, users need authenticating with the smart meter for the subsequent communication. Although there are many researches in this field, few of which have endeavored to protect the anonymity and the untraceability of users during the authentication. Further, some studies consider the problem of user anonymity, but they are non-light-weight protocols, even some can not assure any fairness in key agreement. In this paper, we first points out that existing authentication schemes for Smart Grid are neither lack of critical security nor short of important property such as untraceability, then we propose a new two-factor lightweight user authentication scheme based on password and biometric. The authentication process of the proposed scheme includes four message exchanges among the user mobile, smart meter and the cloud server, and then a security one-time session key is generated for the followed communication process. Moreover, the scheme has some new features, such as the protection of the user's anonymity and untraceability. Security analysis shows that our proposed scheme can resist various well-known attacks and the performance analysis shows that compared to other three schemes, our scheme is more lightweight, secure and efficient.
Two-factor authentication (2FA) popularly works by verifying something the user knows (a password) and something she possesses (a token, popularly instantiated with a smart phone). Conventional 2FA systems require extra interaction like typing a verification code, which is not very user-friendly. For improved user experience, recent work aims at zero-effort 2FA, in which a smart phone placed close to a computer (where the user enters her username/password into a browser to log into a server) automatically assists with the authentication. To prove her possession of the smart phone, the user needs to prove the phone is on the login spot, which reduces zero-effort 2FA to co-presence detection. In this paper, we propose SoundAuth, a secure zero-effort 2FA mechanism based on (two kinds of) ambient audio signals. SoundAuth looks for signs of proximity by having the browser and the smart phone compare both their surrounding sounds and certain unpredictable near-ultrasounds; if significant distinguishability is found, SoundAuth rejects the login request. For the ambient signals comparison, we regard it as a classification problem and employ a machine learning technique to analyze the audio signals. Experiments with real login attempts show that SoundAuth not only is comparable to existent schemes concerning utility, but also outperforms them in terms of resilience to attacks. SoundAuth can be easily deployed as it is readily supported by most smart phones and major browsers.
In this paper, we propose a new authentication method to prevent authentication vulnerability of Claim Token method of Membership Service provide in Private BlockChain. We chose Hyperledger Fabric v1.0 using JWT authentication method of membership service. TOTP, which generate OTP tokens and user authentication codes that generate additional time-based password on existing authentication servers, has been applied to enforce security and two-factor authentication method to provide more secure services.
Due to the rapid development of internet in our daily life, protecting privacy has become a focus of attention. To create privacy-preserving database and prevent illegal user access the database, oblivious transfer with access control (OTAC) was proposed, which is a cryptographic primitive that extends from oblivious transfer (OT). It allows a user to anonymously query a database where each message is protected by an access control policy and only if the user' s attribute satisfy that access control policy can obtain it. In this paper, we propose a new protocol for OTAC by using elliptic curve cryptography, which is more efficient compared to the existing similar protocols. In our scheme, we also preserves user's anonymity and ensures that the user's attribute is not disclosed to the sender. Additionally, our construction guarantees the user to verify the correctness of messages recovered at the end of each transfer phase.