Visible to the public Biblio

Filters: Keyword is Atmospheric measurements  [Clear All Filters]
2023-01-13
Wermke, Dominik, Wöhler, Noah, Klemmer, Jan H., Fourné, Marcel, Acar, Yasemin, Fahl, Sascha.  2022.  Committed to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects. 2022 IEEE Symposium on Security and Privacy (SP). :1880–1896.
Open Source Software plays an important role in many software ecosystems. Whether in operating systems, network stacks, or as low-level system drivers, software we encounter daily is permeated with code contributions from open source projects. Decentralized development and open collaboration in open source projects introduce unique challenges: code submissions from unknown entities, limited personpower for commit or dependency reviews, and bringing new contributors up-to-date in projects’ best practices & processes.In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse set of open source projects, we investigate their security and trust practices. For this, we explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident handling & encountered challenges. We find that our participants’ projects are highly diverse both in deployed security measures and trust processes, as well as their underlying motivations. Based on our findings, we discuss implications for the open source software ecosystem and how the research community can better support open source projects in trust and security considerations. Overall, we argue for supporting open source projects in ways that consider their individual strengths and limitations, especially in the case of smaller projects with low contributor numbers and limited access to resources.
2022-09-30
Terzi, Sofia, Savvaidis, Charalampos, Sersemis, Athanasios, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  Decentralizing Identity Management and Vehicle Rights Delegation through Self-Sovereign Identities and Blockchain. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1217–1223.
With smart vehicles interconnected with multiple systems and other entities, whether they are people or IoT devices, the importance of a digital identity for them has emerged. We present in this paper how a Self-Sovereign Identities combined with blockchain can provide a solution to this end, in order to decentralize the identity management and provide them with capabilities to identify the other entities they interact with. Such entities can be the owners of the vehicles, other drivers and workshops that act as service providers. Two use cases are examined along with the interactions between the participants, to demonstrate how a decentralized identity management solution can take care of the necessary authentication and authorization processes. Finally, we test the system and provide the measurements to prove its feasibility in real-life deployments.
2022-08-26
Zimmer, D., Conti, F., Beg, F., Gomez, M. R., Jennings, C. A., Myers, C. E., Bennett, N..  2021.  Effects of Applied Axial Magnetic Fields on Current Coupling in Maglif Experiments on the Z Machine. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
The Z machine is a pulsed power generator located at Sandia National Laboratories in Albuquerque, New Mexico. It is capable of producing a \textbackslashtextgreater20 MA current pulse that is directed onto an experimental load. While a diverse array of experiments are conducted on the Z machine, including x-ray production and dynamic materials science experiments, the focus of this presentation are the Magnetic Liner Inertial Fusion (MagLIF) experiments. In these experiments, an axial magnetic field is applied to the load region, where a cylindrical, fuel-filled metal liner is imploded. We explore the effects of this field on the ability to efficiently couple the generator current to the load, and the extent to which this field interrupts the magnetic insulation of the inner-most transmission line. We find that at the present-day applied field values, the effects of the applied field on current coupling are negligible. Estimates of the potential impact on current coupling of the larger applied field values planned for future experiments are also given. Shunted current is measured with B-dot probes and flyer velocimetry techniques. Analytical calculations, 2D particle-in-cell simulations, and experimental measurements will be presented.
2022-08-12
Jiang, Hongpu, Yuan, Yuyu, Guo, Ting, Zhao, Pengqian.  2021.  Measuring Trust and Automatic Verification in Multi-Agent Systems. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :271—277.
Due to the shortage of resources and services, agents are often in competition with each other. Excessive competition will lead to a social dilemma. Under the viewpoint of breaking social dilemma, we present a novel trust-based logic framework called Trust Computation Logic (TCL) for measure method to find the best partners to collaborate and automatically verifying trust in Multi-Agent Systems (MASs). TCL starts from defining trust state in Multi-Agent Systems, which is based on contradistinction between behavior in trust behavior library and in observation. In particular, a set of reasoning postulates along with formal proofs were put forward to support our measure process. Moreover, we introduce symbolic model checking algorithms to formally and automatically verify the system. Finally, the trust measure method and reported experimental results were evaluated by using DeepMind’s Sequential Social Dilemma (SSD) multi-agent game-theoretic environments.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.  2021.  Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
2022-07-01
Mei, Yu, Ma, Yongfeng, An, Jianping, Ma, Jianjun.  2021.  Analysis of Eavesdropping Attacks on Terahertz Links propagating through Atmospheric Turbulence. 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). :1–2.
Despite the high directivity of THz beams, THz wireless links may still suffer compromising emissions when propagate through atmospheric turbulence and suffers scattering. In this work, we investigate the eavesdropping risks of a line-of-sight (LOS) THz link `in atmospheric turbulence with an eavesdropper located close to but outside of the beam path. A theoretical model considering the turbulence induced losses, gaseous absorption and beam divergence is conducted. Theoretical estimations agree well with our measured data. The secrecy capacity and outage probability dependent on the carrier frequency, turbulence strength, eavesdropper’s position and receiver sensitivity are analyzed.
2022-06-09
Adamik, Mark, Dudzinska, Karolina, Herskind, Adrian J., Rehm, Matthias.  2021.  The Difference Between Trust Measurement and Behavior: Investigating the Effect of Personalizing a Robot's Appearance on Trust in HRI. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :880–885.
With the increased use of social robots in critical applications, like elder care and rehabilitation, it becomes necessary to investigate the user's trust in robots to prevent over- and under-utilization of the robotic systems. While several studies have shown how trust increases through personalised behaviour, there is a lack of research concerned with the influence of personalised physical appearance. This study explores the effect of personalised physical appearance on trust in human-robot-interaction (HRI). In an online game, 60 participants interacted with a robot, where half of the participants were asked to personalise the robot prior to the game. Trust was measured through a trust-related questionnaire as well as by evaluating user behaviour during the game. Results indicate that personalised physical appearance does not directly correlate to higher trust perceptions, however, there was significant evidence that players exhibit more trusting behaviours in a game against a personalised robot.
2022-03-08
Myasnikov, Evgeny.  2021.  Nearest Neighbor Search In Hyperspectral Data Using Binary Space Partitioning Trees. 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). :1—4.
Fast search of hyperspectral data is crucial in many practical applications ranging from classification to finding duplicate fragments in images. In this paper, we evaluate two space partitioning data structures in the task of searching hyperspectral data. In particular, we consider vp-trees and ball-trees, study several tree construction algorithms, and compare these structures with the brute force approach. In addition, we evaluate vp-trees and ball-trees with four similarity measures, namely, Euclidean Distance, Spectral Angle Mapper Bhattacharyya Angle, and Hellinger distance.
Lee, Sungwon, Ha, Jeongwon, Seo, Junho, Kim, Dongkyun.  2021.  Avoiding Content Storm Problem in Named Data Networking. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :126–128.
Recently, methods are studied to overcome various problems for Named Data Networking(NDN). Among them, a new method which can overcome content storm problem is required to reduce network congestion and deliver content packet to consumer reliably. According to the various studies, the content storm problems could be overcame by scoped interest flooding. However, because these methods do not considers not only network congestion ratio but also the number another different paths, the correspond content packets could be transmitted unnecessary and network congestion could be worse. Therefore, in this paper, we propose a new content forwarding method for NDN to overcome the content storm problem. In the proposed method, if the network is locally congested and another paths are generated, an intermediate node could postpone or withdraw the content packet transmission to reduce congestion.
2022-02-24
Lin, Junxiong, Xu, Yajing, Lu, Zhihui, Wu, Jie, Ye, Houhao, Huang, Wenbing, Chen, Xuzhao.  2021.  A Blockchain-Based Evidential and Secure Bulk-Commodity Supervisory System. 2021 International Conference on Service Science (ICSS). :1–6.
In recent years, the commodities industry has grown rapidly under the stimulus of domestic demand and the expansion of cross-border trade. It has also been combined with the rapid development of e-commerce technology in the same period to form a flexible and efficient e-commerce system for bulk commodities. However, the hasty combination of both has inspired a lack of effective regulatory measures in the bulk industry, leading to constant industry chaos. Among them, the problem of lagging evidence in regulatory platforms is particularly prominent. Based on this, we design a blockchain-based evidential and secure bulk-commodity supervisory system (abbr. BeBus). Setting different privacy protection policies for each participant in the system, the solution ensures effective forensics and tamper-proof evidence to meet the needs of the bulk business scenario.
2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2021-02-03
Lyons, J. B., Nam, C. S., Jessup, S. A., Vo, T. Q., Wynne, K. T..  2020.  The Role of Individual Differences as Predictors of Trust in Autonomous Security Robots. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—5.

This research used an Autonomous Security Robot (ASR) scenario to examine public reactions to a robot that possesses the authority and capability to inflict harm on a human. Individual differences in terms of personality and Perfect Automation Schema (PAS) were examined as predictors of trust in the ASR. Participants (N=316) from Amazon Mechanical Turk (MTurk) rated their trust of the ASR and desire to use ASRs in public and military contexts following a 2-minute video depicting the robot interacting with three research confederates. The video showed the robot using force against one of the three confederates with a non-lethal device. Results demonstrated that individual differences factors were related to trust and desired use of the ASR. Agreeableness and both facets of the PAS (high expectations and all-or-none beliefs) demonstrated unique associations with trust using multiple regression techniques. Agreeableness, intellect, and high expectations were uniquely related to desired use for both public and military domains. This study showed that individual differences influence trust and one's desired use of ASRs, demonstrating that societal reactions to ASRs may be subject to variation among individuals.

2021-02-01
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
2020-12-14
Willcox, G., Rosenberg, L., Burgman, M., Marcoci, A..  2020.  Prioritizing Policy Objectives in Polarized Groups using Artificial Swarm Intelligence. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–9.
Groups often struggle to reach decisions, especially when populations are strongly divided by conflicting views. Traditional methods for collective decision-making involve polling individuals and aggregating results. In recent years, a new method called Artificial Swarm Intelligence (ASI) has been developed that enables networked human groups to deliberate in real-time systems, moderated by artificial intelligence algorithms. While traditional voting methods aggregate input provided by isolated participants, Swarm-based methods enable participants to influence each other and converge on solutions together. In this study we compare the output of traditional methods such as Majority vote and Borda count to the Swarm method on a set of divisive policy issues. We find that the rankings generated using ASI and the Borda Count methods are often rated as significantly more satisfactory than those generated by the Majority vote system (p\textbackslashtextless; 0.05). This result held for both the population that generated the rankings (the “in-group”) and the population that did not (the “out-group”): the in-group ranked the Swarm prioritizations as 9.6% more satisfactory than the Majority prioritizations, while the out-group ranked the Swarm prioritizations as 6.5% more satisfactory than the Majority prioritizations. This effect also held even when the out-group was subject to a demographic sampling bias of 10% (i.e. the out-group was composed of 10% more Labour voters than the in-group). The Swarm method was the only method to be perceived as more satisfactory to the “out-group” than the voting group.
2020-12-01
Xu, J., Bryant, D. G., Howard, A..  2018.  Would You Trust a Robot Therapist? Validating the Equivalency of Trust in Human-Robot Healthcare Scenarios 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :442—447.

With the recent advances in computing, artificial intelligence (AI) is quickly becoming a key component in the future of advanced applications. In one application in particular, AI has played a major role - that of revolutionizing traditional healthcare assistance. Using embodied interactive agents, or interactive robots, in healthcare scenarios has emerged as an innovative way to interact with patients. As an essential factor for interpersonal interaction, trust plays a crucial role in establishing and maintaining a patient-agent relationship. In this paper, we discuss a study related to healthcare in which we examine aspects of trust between humans and interactive robots during a therapy intervention in which the agent provides corrective feedback. A total of twenty participants were randomly assigned to receive corrective feedback from either a robotic agent or a human agent. Survey results indicate trust in a therapy intervention coupled with a robotic agent is comparable to that of trust in an intervention coupled with a human agent. Results also show a trend that the agent condition has a medium-sized effect on trust. In addition, we found that participants in the robot therapist condition are 3.5 times likely to have trust involved in their decision than the participants in the human therapist condition. These results indicate that the deployment of interactive robot agents in healthcare scenarios has the potential to maintain quality of health for future generations.

Nielsen, C., Mathiesen, M., Nielsen, J., Jensen, L. C..  2019.  Changes in Heart Rate and Feeling of Safety When Led by a Rehabilitation Robot. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :580—581.

Trust is an important topic in medical human-robot interaction, since patients may be more fragile than other groups of people. This paper investigates the issue of users' trust when interacting with a rehabilitation robot. In the study, we investigate participants' heart rate and perception of safety in a scenario when their arm is led by the rehabilitation robot in two types of exercises at three different velocities. The participants' heart rate are measured during each exercise and the participants are asked how safe they feel after each exercise. The results showed that velocity and type of exercise has no significant influence on the participants' heart rate, but they do have significant influence on how safe they feel. We found that increasing velocity and longer exercises negatively influence participants' perception of safety.

Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

2020-02-10
Schneeberger, Tanja, Scholtes, Mirella, Hilpert, Bernhard, Langer, Markus, Gebhard, Patrick.  2019.  Can Social Agents elicit Shame as Humans do? 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). :164–170.
This paper presents a study that examines whether social agents can elicit the social emotion shame as humans do. For that, we use job interviews, which are highly evaluative situations per se. We vary the interview style (shame-eliciting vs. neutral) and the job interviewer (human vs. social agent). Our dependent variables include observational data regarding the social signals of shame and shame regulation as well as self-assessment questionnaires regarding the felt uneasiness and discomfort in the situation. Our results indicate that social agents can elicit shame to the same amount as humans. This gives insights about the impact of social agents on users and the emotional connection between them.
2019-05-08
Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.

2018-06-07
Zenger, C. T., Pietersz, M., Rex, A., Brauer, J., Dressler, F. P., Baiker, C., Theis, D., Paar, C..  2017.  Implementing a real-time capable WPLS testbed for independent performance and security analyses. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :9–13.

As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.

2018-03-19
Dai, W., Win, M. Z..  2017.  On Protecting Location Secrecy. 2017 International Symposium on Wireless Communication Systems (ISWCS). :31–36.

High-accuracy localization is a prerequisite for many wireless applications. To obtain accurate location information, it is often required to share users' positional knowledge and this brings the risk of leaking location information to adversaries during the localization process. This paper develops a theory and algorithms for protecting location secrecy. In particular, we first introduce a location secrecy metric (LSM) for a general measurement model of an eavesdropper. Compared to previous work, the measurement model accounts for parameters such as channel conditions and time offsets in addition to the positions of users. We determine the expression of the LSM for typical scenarios and show how the LSM depends on the capability of an eavesdropper and the quality of the eavesdropper's measurement. Based on the insights gained from the analysis, we consider a case study in wireless localization network and develop an algorithm that diminish the eavesdropper's capabilities by exploiting the reciprocity of channels. Numerical results show that the proposed algorithm can effectively increase the LSM and protect location secrecy.

Ward, T., Choi, J. I., Butler, K., Shea, J. M., Traynor, P., Wong, T. F..  2017.  Privacy Preserving Localization Using a Distributed Particle Filtering Protocol. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :835–840.

Cooperative spectrum sensing is often necessary in cognitive radios systems to localize a transmitter by fusing the measurements from multiple sensing radios. However, revealing spectrum sensing information also generally leaks information about the location of the radio that made those measurements. We propose a protocol for performing cooperative spectrum sensing while preserving the privacy of the sensing radios. In this protocol, radios fuse sensing information through a distributed particle filter based on a tree structure. All sensing information is encrypted using public-key cryptography, and one of the radios serves as an anonymizer, whose role is to break the connection between the sensing radios and the public keys they use. We consider a semi-honest (honest-but-curious) adversary model in which there is at most a single adversary that is internal to the sensing network and complies with the specified protocol but wishes to determine information about the other participants. Under this scenario, an adversary may learn the sensing information of some of the radios, but it does not have any way to tie that information to a particular radio's identity. We test the performance of our proposed distributed, tree-based particle filter using physical measurements of FM broadcast stations.

2017-12-12
Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., Gamboa, C..  2017.  A scientific data provenance harvester for distributed applications. 2017 New York Scientific Data Summit (NYSDS). :1–9.

Data provenance provides a way for scientists to observe how experimental data originates, conveys process history, and explains influential factors such as experimental rationale and associated environmental factors from system metrics measured at runtime. The US Department of Energy Office of Science Integrated end-to-end Performance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) project has developed a provenance harvester that is capable of collecting observations from file based evidence typically produced by distributed applications. To achieve this, file based evidence is extracted and transformed into an intermediate data format inspired in part by W3C CSV on the Web recommendations, called the Harvester Provenance Application Interface (HAPI) syntax. This syntax provides a general means to pre-stage provenance into messages that are both human readable and capable of being written to a provenance store, Provenance Environment (ProvEn). HAPI is being applied to harvest provenance from climate ensemble runs for Accelerated Climate Modeling for Energy (ACME) project funded under the U.S. Department of Energy's Office of Biological and Environmental Research (BER) Earth System Modeling (ESM) program. ACME informally provides provenance in a native form through configuration files, directory structures, and log files that contain success/failure indicators, code traces, and performance measurements. Because of its generic format, HAPI is also being applied to harvest tabular job management provenance from Belle II DIRAC scheduler relational database tables as well as other scientific applications that log provenance related information.

Reinerman-Jones, L., Matthews, G., Wohleber, R., Ortiz, E..  2017.  Scenarios using situation awareness in a simulation environment for eliciting insider threat behavior. 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–3.

An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.

2017-03-08
Kalina, J., Schlenker, A., Kutílek, P..  2015.  Highly robust analysis of keystroke dynamics measurements. 2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI). :133–138.

Standard classification procedures of both data mining and multivariate statistics are sensitive to the presence of outlying values. In this paper, we propose new algorithms for computing regularized versions of linear discriminant analysis for data with small sample sizes in each group. Further, we propose a highly robust version of a regularized linear discriminant analysis. The new method denoted as MWCD-L2-LDA is based on the idea of implicit weights assigned to individual observations, inspired by the minimum weighted covariance determinant estimator. Classification performance of the new method is illustrated on a detailed analysis of our pilot study of authentication methods on computers, using individual typing characteristics by means of keystroke dynamics.