Visible to the public Biblio

Filters: Keyword is Secure File Sharing  [Clear All Filters]
2022-04-01
Liu, Jingwei, Wu, Mingli, Sun, Rong, Du, Xiaojiang, Guizani, Mohsen.  2021.  BMDS: A Blockchain-based Medical Data Sharing Scheme with Attribute-Based Searchable Encryption. ICC 2021 - IEEE International Conference on Communications. :1—6.
In recent years, more and more medical institutions have been using electronic medical records (EMRs) to improve service efficiency and reduce storage cost. However, it is difficult for medical institutions with different management methods to share medical data. The medical data of patients is easy to be abused, and there are security risks of privacy data leakage. The above problems seriously impede the sharing of medical data. To solve these problems, we propose a blockchain-based medical data sharing scheme with attribute-based searchable encryption, named BMDS. In BMDS, encrypted EMRs are securely stored in the interplanetary file system (IPFS), while corresponding indexes and other information are stored in a medical consortium blockchain. The proposed BMDS has the features of tamper-proof, privacy preservation, verifiability and secure key management, and there is no single point of failure. The performance evaluation of computational overhead and security analysis show that the proposed BMDS has more comprehensive security features and practicability.
Ashwini, S D, Patil, Annapurna P, Shetty, Savita K.  2021.  Moving Towards Blockchain-Based Solution for Ensuring Secure Storage of Medical Images. 2021 IEEE 18th India Council International Conference (INDICON). :1—5.
Over the last few years, the world has been moving towards digital healthcare, where harnessing medical data distributed across multiple healthcare providers is essential to achieving personalized treatments. Though the efficiency and speed of the diagnosis process have increased due to the digitalization of healthcare data, it is at constant risk of cyberattacks. Medical images, in particular, seem to have become a regular victim of hackers, due to which there is a need to find a feasible solution for storing them securely. This work proposes a blockchain-based framework that leverages the InterPlanetary File system (IPFS) to provide decentralized storage for medical images. Our proposed blockchain storage model is implemented in the IPFS distributed file-sharing system, where each image is stored on IPFS, and its corresponding unique content-addressed hash is stored in the blockchain. The proposed model ensures the security of the medical images without any third-party dependency and eliminates the obstacles that arise due to centralized storage.
Kumar, Anuj.  2021.  Framework for Data Security Using DNA Cryptography and HMAC Technique in Cloud Computing. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). :898—903.

The main objective of the proposed work is to build a reliable and secure architecture for cloud servers where users may safely store and transfer their data. This platform ensures secure communication between the client and the server during data transfer. Furthermore, it provides a safe method for sharing and transferring files from one person to another. As a result, for ensuring safe data on cloud servers, this research work presents a secure architecture combining three DNA cryptography, HMAC, and a third party Auditor. In order to provide security by utilizing various strategies, a number of traditional and novel cryptographic methods are investigated. In the first step, data will be encrypted with the help of DNA cryptography, where the encoded document will be stored in the cloud server. In next step, create a HMAC value of encrypted file, which was stored on cloud by using secret key and sends to TPA. In addition, Third Party Auditor is used for authenticate the purity of stored documents in cloud at the time of verification TPA also create HMAC value from Cloud stored data and verify it. DNA-based cryptographic technique, hash based message authentic code and third party auditor will provide more secured framework for data security and integrity in cloud server.

Kumar Gupta, Lalit, Singh, Aniket, Kushwaha, Abhishek, Vishwakarma, Ashish.  2021.  Analysis of Image Steganography Techniques for Different Image Format. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1—6.
Steganography is the method of hiding one type of information into other type of information, hiding a secret a message in a cover so that others can't know the presence of the secret information. It provides an extra layer of security in communication and information sharing. Security is an important aspect of the communication process; everyone want security in communication. The main purpose of this paper is to introduce security of information that people share among them. In this paper we are presenting different methods of substitution techniques of image steganography and their comparison. Least significant bit and most significant bit substitution techniques are used. Information is hidden in an image file and then decoded back for the secret message. Hiding the presence of any hidden information makes this more secure. This implementation can be used by secret service agencies and also common people for secure communication.
Pokharana, Anchal, Sharma, Samiksha.  2021.  Encryption, File Splitting and File compression Techniques for Data Security in virtualized environment. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :480—485.
Nowadays cloud computing has become the crucial part of IT and most important thing is information security in cloud environment. Range of users can access the facilities and use cloud according to their feasibility. Cloud computing is utilized as safe storage of information but still data security is the biggest concern, for example, secrecy, data accessibility, data integrity is considerable factor for cloud storage. Cloud service providers provide the facility to clients that they can store the data on cloud remotely and access whenever required. Due to this facility, it gets necessary to shield or cover information from unapproved access, hackers or any sort of alteration and malevolent conduct. It is inexpensive approach to store the valuable information and doesn't require any hardware and software to hold the data. it gives excellent work experience but main measure is just security. In this work security strategies have been proposed for cloud data protection, capable to overpower the shortcomings of conventional data protection algorithms and enhancing security using steganography algorithm, encryption decryption techniques, compression and file splitting technique. These techniques are utilized for effective results in data protection, Client can easily access our developed desktop application and share the information in an effective and secured way.
Ali, Hisham, Papadopoulos, Pavlos, Ahmad, Jawad, Pitropakis, Nikolaos, Jaroucheh, Zakwan, Buchanan, William J..  2021.  Privacy-preserving and Trusted Threat Intelligence Sharing using Distributed Ledgers. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1—6.
Threat information sharing is considered as one of the proactive defensive approaches for enhancing the over-all security of trusted partners. Trusted partner organizations can provide access to past and current cybersecurity threats for reducing the risk of a potential cyberattack—the requirements for threat information sharing range from simplistic sharing of documents to threat intelligence sharing. Therefore, the storage and sharing of highly sensitive threat information raises considerable concerns regarding constructing a secure, trusted threat information exchange infrastructure. Establishing a trusted ecosystem for threat sharing will promote the validity, security, anonymity, scalability, latency efficiency, and traceability of the stored information that protects it from unauthorized disclosure. This paper proposes a system that ensures the security principles mentioned above by utilizing a distributed ledger technology that provides secure decentralized operations through smart contracts and provides a privacy-preserving ecosystem for threat information storage and sharing regarding the MITRE ATT&CK framework.
Kamal, Naheel Faisal, Malluhi, Qutaibah.  2021.  Client-Based Secure IoT Data Sharing using Untrusted Clouds. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :409—414.
IoT systems commonly rely on cloud services. However, utilizing cloud providers can be problematic in terms of data security. Data stored in the cloud need to be secured from unauthorized malicious nodes and from the cloud providers themselves. Using a simple symmetric cipher can encrypt the data before uploading and decrypt it while retrieving. However, such a solution can be only applied between two parties with no support for multiple nodes. Whereas in IoT scenarios, many smart devices communicate and share data with each other. This paper proposes a solution that tackles the issue of sharing data securely between IoT devices by implementing a system that allows secure sharing of encrypted data in untrusted clouds. The implementation of the system performs the computation on connectionless clients with no involvement of the cloud server nor any third party. The cloud server is only used as a passive storage server. Analysis of the implemented prototype demonstrates that the system can be used in real-life applications with relatively small overhead. Based on the used hardware, key generation takes about 60 nanoseconds and the storage overhead is only a few kilobytes for large number of files and/or users.
Khan, Asad Ullah, Javaid, Nadeem, Othman, Jalel Ben.  2021.  A Secure Authentication and Data Sharing Scheme for Wireless Sensor Networks based on Blockchain. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—5.
In this paper, a blockchain based scheme is proposed to provide registration, mutual authentication and data sharing in wireless sensor network. The proposed model consists of three types of nodes: coordinators, cluster heads and sensor nodes. A consortium blockchain is deployed on coordinator nodes. The smart contracts execute on coordinators to record the identities of legitimate nodes. Moreover, they authenticate nodes and facilitate in data sharing. When a sensor node communicate and accesses data of any other sensor node, both nodes mutually authenticate each other. The smart contract of data sharing is used to provide a secure communication and data exchange between sensor nodes. Moreover, the data of all the nodes is stored on the decentralized storage called interplanetary file system. The simulation results show the response time of IPFS and message size during authentication and registration.
Uddin, Md. Nasim, Hasnat, Abu Hayat Mohammed Abul, Nasrin, Shamima, Alam, Md. Shahinur, Yousuf, Mohammad Abu.  2021.  Secure File Sharing System Using Blockchain, IPFS and PKI Technologies. 2021 5th International Conference on Electrical Information and Communication Technology (EICT). :1—5.
People are dependent on Trusted Third Party (TTP) administration based Centralized systems for content sharing having a deficit of security, faith, immutability, and clearness. This work has proposed a file-sharing environment based on Blockchain by clouting the Interplanetary File System (IPFS) and Public Key Infrastructure (PKI) systems, advantages for overcoming these troubles. The smart contract is implemented to control the access privilege and the modified version of IPFS software is utilized to enforce the predefined access-control list. An application framework on a secure decentralized file sharing system is presented in combination with IPFS and PKI to secure file sharing. PKI having public and private keys is used to enable encryption and decryption of every file transaction and authentication of identities through Metamask to cryptographically recognize account ownership in the Blockchain system. A gas consumption-based result analysis is done in the private Ethereum network and it attains transparency, security managed access, and quality of data indicating better efficacy of this work.
Lin, Shanshan, Yin, Jie, Pei, Qingqi, Wang, Le, Wang, Zhangquan.  2021.  A Nested Incentive Scheme for Distributed File Sharing Systems. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT). :60—65.
In the distributed file sharing system, a large number of users share bandwidth, upload resources and store them in a decentralized manner, thus offering both an abundant supply of high-quality resources and high-speed download. However, some users only enjoy the convenient service without uploading or sharing, which is called free riding. Free-riding may discourage other honest users. When free-riding users mount to a certain number, the platform may fail to work. The current available incentive mechanisms, such as reciprocal incentive mechanisms and reputation-based incentive mechanisms, which suffer simple incentive models, inability to achieve incentive circulation and dependence on a third-party trusted agency, are unable to completely solve the free-riding problem.In this paper we build a blockchain-based distributed file sharing platform and design a nested incentive scheme for this platform. The proposed nested incentive mechanism achieves the circulation of incentives in the platform and does not rely on any trusted third parties for incentive distribution, thus providing a better solution to free-riding. Our distributed file sharing platform prototype is built on the current mainstream blockchain. Nested incentive scheme experiments on this platform verify the effectiveness and superiority of our incentive scheme in solving the free-riding problem compared to other schemes.
2021-04-27
Alniamy, A. M., Liu, H..  2020.  Blockchain-Based Secure Collaboration Platform for Sharing and Accessing Scientific Research Data. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :34—40.
Research teams or institutions in different countries need an effective and secure online platform for collaboration and data sharing. It is essential to build such a collaboration platform with strong data security and privacy. In this paper, we propose a platform for researchers to collaborate and share their data by leveraging attribute-based access control (ABAC) and blockchain technologies. ABAC provides an access control paradigm whereby access rights are granted to users through attribute-based policies, instead of user identities and roles. Hyperledger fabric permission blockchain is used to enable a decentralized secure data sharing environment and preserves user’s privacy. The proposed platform allows researchers to fully control their data, manage access to the data at a fine-grained level, keep file updates with proof of authorship, and ensure data integrity and privacy.
Abraham, A., Kumar, M. B. Santosh.  2020.  A study on using private-permissioned blockchain for securely sharing farmers data. 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). :103—106.
In agriculture, farmers are the most important entity. For supporting farmers in increasing productivity and efficiency, the government offers subsidies, loans, insurances, and so on. This paper explores the usage of Blockchain technology for securing farmer's data in the Indian scenario. The farmer needs to register through the multiple official registration systems for availing different schemes and information provided by the country. The personnel and crop-based details of each farmer are collected at the time of registration. The filing also helps in providing better services to farmers like connecting farmers and traders to ensure a fair price for quality crops, advice to farmers of agricultural practices and location. In this paper, a blockchain-based farmer's data securing system is proposed to provide data provenance and transparency of the information entered in the system. While registering, the data is collected, and it is verified. A single verified record of farmers accessed by various government agriculture departments were designed using the Hyperledger fabric framework.
Mante, R. V., Bajad, N. R..  2020.  A Study of Searchable and Auditable Attribute Based Encryption in Cloud. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1411—1415.
In cloud computing, the data is stored and retrieved through the internet. There are some common systems for cloud storage which includes the system for e-health records, the file stored on to the cloud server includes information which is private and sensitive, and the main focus should be that at the time when data gets shared, the content of the file should not be revealed. One of the ways to secure the file data is to simply encrypt the file, but on the other side, the authenticate user to which the data is shared will not be able to use it. User's time and memory are saved by Storing data in the cloud. The main issue is that the user loses total control over the once it is upload. This issue needs to be addressed while designing the system. In this paper the study of various mechanisms and techniques for data security stored over the cloud and hiding of the sensitive and private data. The paper also discusses the various issues faced while using or applying the techniques. Here, a system is proposed to use the encryption techniques, algorithms as well as secure cloud storage.
Uthayashangar, S., Abinaya, J., Harshini, V., Jayavardhani, R..  2020.  Image And Text Encrypted Data With Authorized Deduplication In Cloud. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
In this paper, the role re-encryption is used to avoid the privacy data lekage and also to avoid the deduplication in a secure role re-encryption system(SRRS). And also it checks for the proof of ownership for to identify whether the user is authorized user or not. This is for the efficiency. Role re-encrytion method is to share the access key for the corresponding authorized user for accessing the particular file without the leakage of privacy data. In our project we are using both the avoidance of text and digital images. For example we have the personal images in our mobile, handheld devices, and in the desktop etc., So, as these images have to keep secure and so we are using the encryption for to increase the high security. The text file also important for the users now-a-days. It has to keep secure in a cloud server. Digital images have to be protected over the communication, however generally personal identification details like copies of pan card, Passport, ATM, etc., to store on one's own pc. So, we are protecting the text file and image data for avoiding the duplication in our proposed system.
Elavarasan, G., Veni, S..  2020.  Data Sharing Attribute-Based Secure with Efficient Revocation in Cloud Computing. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—6.

In recent days, cloud computing is one of the emerging fields. It is a platform to maintain the data and privacy of the users. To process and regulate the data with high security, the access control methods are used. The cloud environment always faces several challenges such as robustness, security issues and so on. Conventional methods like Cipher text-Policy Attribute-Based Encryption (CP-ABE) are reflected in providing huge security, but still, the problem exists like the non-existence of attribute revocation and minimum efficient. Hence, this research work particularly on the attribute-based mechanism to maximize efficiency. Initially, an objective coined out in this work is to define the attributes for a set of users. Secondly, the data is to be re-encrypted based on the access policies defined for the particular file. The re-encryption process renders information to the cloud server for verifying the authenticity of the user even though the owner is offline. The main advantage of this work evaluates multiple attributes and allows respective users who possess those attributes to access the data. The result proves that the proposed Data sharing scheme helps for Revocation under a fine-grained attribute structure.

Saroliya, A., Mondal, J., Agrawal, M..  2020.  A Solution for Secured Content Transferring in between Multiple Hosts within P2P Enabled Intranet. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3). :1—3.
Peer to peer file transferring is always a better approach for sharing the contents among multiple nodes when they are in same logical network. Sometimes when a peer leaves the network and its resources key is handed-over to other neighbors (may be adjacent peer) there is always high risk for transferring of related content. In this paper a solution has been implemented through which peers can share files with another peer in a secure manner over P2P enabled intra-network. The data of Peers are located in two different folders namely- PUBLIC and PRIVATE. For a PRIVATE file, the permission from the owner will be desired to retrieve the file at the receiving-end peer. This enables users to restrict the outflow of files. The main advantage of this application is that there is no need of global network (internetwork) and a centralized server.
Fuhry, B., Hirschoff, L., Koesnadi, S., Kerschbaum, F..  2020.  SeGShare: Secure Group File Sharing in the Cloud using Enclaves. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :476—488.
File sharing applications using cloud storage are increasingly popular for personal and business use. Due to data protection concerns, end-to-end encryption is often a desired feature of these applications. Many attempts at designing cryptographic solutions fail to be adopted due to missing relevant features. We present SeGShare, a new architecture for end-to-end encrypted, group-based file sharing using trusted execution environments (TEE), e.g., Intel SGX. SeGShare is the first solution to protect the confidentiality and integrity of all data and management files; enforce immediate permission and membership revocations; support deduplication; and mitigate rollback attacks. Next to authentication, authorization and file system management, our implementation features an optimized TLS layer that enables high throughput and low latency. The encryption overhead of our implementation is extremely small in computation and storage resources. Our enclave code comprises less than 8500 lines of code enabling efficient mitigation of common pitfalls in deploying code to TEEs.
Pachaghare, S., Patil, P..  2020.  Improving Authentication and Data Sharing Capabilities of Cloud using a Fusion of Kerberos and TTL-based Group Sharing. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1401—1405.
Cloud security has been of utmost concern for researchers and cloud deployers since the inception of cloud computing. Methods like PKI, hashing, encryption, etc. have proven themselves useful throughout cloud technology development, but they are not considered as a complete security solution for all kinds of cloud authentications. Moreover, data sharing in the cloud has also become a question of research due to the abundant use of data storage available on the cloud. To solve these issues, a Kerberos-based time-to-live (TTL) inspired data sharing and authentication mechanism is proposed on the cloud. The algorithm combines the two algorithms and provides a better cloud deployment infrastructure. It uses state-of-the-art elliptic curve cryptography along with a secure hashing algorithm (SHA 256) for authentication, and group-based time-to-live data sharing to evaluate the file-sharing status for the users. The result evaluates the system under different authentication attacks, and it is observed that the system is efficient under any kind of attack and any kind of file sharing process.
Tsai, W., Chou, T., Chen, J., Ma, Y., Huang, C..  2020.  Blockchain as a Platform for Secure Cloud Computing Services. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :155—158.
Problems related to privacy and cyber-attacks have increased in recent years as a result of the rapid development of cloud computing. This work concerns secure cloud computing services on a blockchain platform, called cloud@blockchain, which benefit from the anonymity and immutability of blockchain. Two functions- anonymous file sharing and inspections to find illegally uploaded files- on cloud@blockchain are designed. On cloud@blockchain, cloud users can access data through smart contracts, and recognize all users within the application layer. The performance of three architectures- a pure blockchain, a hybrid blockchain with cache and a traditional database in accessing data is analyzed. The results reveal the superiority of the hybrid blockchain with the cache over the pure blockchain and the traditional database, which it outperforms by 500% and 53.19%, respectively.
2020-03-18
Banerjee, Rupam, Chattopadhyay, Arup Kumar, Nag, Amitava, Bose, Kaushik.  2019.  A Nobel Cryptosystem for Group Data Sharing in Cloud Storage. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0728–0731.
The biggest challenge of sharing data stored in cloud-storage is privacy-preservation. In this paper, we propose a simple yet effective solution for enforcing the security of private data stored in some cloud storage for sharing. We consider an environment where even if the cloud service provider is not-reliable or is compromised, our data still remain secure. The data Owner encrypts the private files using a secret key, file identifier and hash function and then uploads the cipher text files to the cloud. When a Data user requests access to a file, the owner establishes a key with the user and creates a new key, which is sent to the user. The user can then extract the original key by using the mutually established secret key and use it to decrypt the encrypted file. Thus we propose a system which is computationally simple yet provides a secure mechanism for sharing private data even over an untrusted cloud service provider.
Padmashree, M G, Khanum, Shahela, Arunalatha, J S, Venugopal, K R.  2019.  SIRLC: Secure Information Retrieval using Lightweight Cryptography in HIoT. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :269–273.

Advances in new Communication and Information innovations has led to a new paradigm known as Internet of Things (IoT). Healthcare environment uses IoT technologies for Patients care which can be used in various medical applications. Patient information is encrypted consistently to maintain the access of therapeutic records by authoritative entities. Healthcare Internet of Things (HIoT) facilitate the access of Patient files immediately in emergency situations. In the proposed system, the Patient directly provides the Key to the Doctor in normal care access. In Emergency care, a Patient shares an Attribute based Key with a set of Emergency Supporting Representatives (ESRs) and access permission to the Doctor for utilizing Emergency key from ESR. The Doctor decrypts the medical records by using Attribute based key and Emergency key to save the Patient's life. The proposed model Secure Information Retrieval using Lightweight Cryptography (SIRLC) reduces the secret key generation time and cipher text size. The performance evaluation indicates that SIRLC is a better option to utilize in Healthcare IoT than Lightweight Break-glass Access Control(LiBAC) with enhanced security and reduced computational complexity.

Lin, Yongze, Zhang, Xinyuan, Xia, Liting, Ren, Yue, Li, Weimin.  2019.  A Hybrid Algorithm for Influence Maximization of Social Networks. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :427–431.
Influence Maximization is an important research content in the dissemination process of information and behavior in social networks. Because Hill Climbing and Greedy Algorithm have good dissemination effect on this topic, researchers have used it to solve this NP problem for a long time. These algorithms only consider the number of active nodes in each round, ignoring the characteristic that the influence will be accumulated, so its effect is still far from the optimal solution. Also, the time complexity of these algorithms is considerable. Aiming at the problem of Influence Maximization, this paper improves the traditional Hill Climbing and Greedy Algorithm. We propose a Hybrid Distribution Value Accumulation Algorithm for Influence Maximization, which has better activation effect than Hill Climbing and Greedy Algorithm. In the first stage of the algorithm, the region is numerically accumulating rapidly and is easy to activate through value-greed. Experiments are conducted on two data sets: the voting situation on Wikipedia and the transmission situation of Gnutella node-to-node file sharing network. Experimental results verify the efficiency of our methods.
Hłobaż, Artur.  2019.  Statistical Analysis of Enhanced SDEx Encryption Method Based on SHA-256 Hash Function. 2019 IEEE 44th Conference on Local Computer Networks (LCN). :238–241.
In the paper, the author provides a statistical analysis of the enhanced SDEx method based on SHA-256 hash function, which is used to secure end-to-end encryption in data transferring. To examine the quality of the enhanced SDEx encryption algorithm, the ciphertext files were tested to check if they fulfill the conditions of pseudo-randomness. To test the pseudo-randomness of the encrypted files, a test package shared by NIST was used for this purpose. In addition, compression tests on ciphertext files were performed using the WinRAR software.
Zhou, Xinyan, Ji, Xiaoyu, Yan, Chen, Deng, Jiangyi, Xu, Wenyuan.  2019.  NAuth: Secure Face-to-Face Device Authentication via Nonlinearity. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2080–2088.
With the increasing prevalence of mobile devices, face-to-face device-to-device (D2D) communication has been applied to a variety of daily scenarios such as mobile payment and short distance file transfer. In D2D communications, a critical security problem is verifying the legitimacy of devices when they share no secrets in advance. Previous research addressed the problem with device authentication and pairing schemes based on user intervention or exploiting physical properties of the radio or acoustic channels. However, a remaining challenge is to secure face-to-face D2D communication even in the middle of a crowd, within which an attacker may hide. In this paper, we present Nhuth, a nonlinearity-enhanced, location-sensitive authentication mechanism for such communication. Especially, we target at the secure authentication within a limited range such as 20 cm, which is the common case for face-to-face scenarios. Nhuth contains averification scheme based on the nonlinear distortion of speaker-microphone systems and a location-based-validation model. The verification scheme guarantees device authentication consistency by extracting acoustic nonlinearity patterns (ANP) while the validation model ensures device legitimacy by measuring the time difference of arrival (TDOA) at two microphones. We analyze the security of Nhuth theoretically and evaluate its performance experimentally. Results show that Nhuth can verify the device legitimacy in the presence of nearby attackers.
Kumar Mangi, S.V.V. Satya Surya Sravan, Hussian S.K., Saddam, Leelavathy, N..  2019.  An Approach for Sending a Confidential Message to the Restricted Users in Defence Based Organization. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
After the creation of the internet, the file sharing process has been changed. Several third-party applications have come to live for sharing and chatting purposes. A spammer can profit by these applications in different ways like, can achieve countless data, can acquire the user's personal information, and furthermore. Later that untrusted cloud storages are used for uploading a file even it is maintained by the third party If they use an untrusted cloud, there is a security problem. We need to give more security for file transfer in the defense-based organization. So, we developed a secure application for group member communication in a secure medium. The user belongs to a specific department from a specific group can access the data from the storage node and decrypt it. Every user in the group needs to register in the node to send or receive the data. Group Manager can restrict the access of the users in a Defense Network and he generates a user list, users in that list can only login to the node and share or download the files. We created a secure platform to upload files and share the data with multiple users by using Dynamic broadcasting Encryption. Users in the list can only download and decrypt the files from the storage node.