Visible to the public Biblio

Filters: Keyword is multiagent systems  [Clear All Filters]
2021-03-29
Ouiazzane, S., Addou, M., Barramou, F..  2020.  Toward a Network Intrusion Detection System for Geographic Data. 2020 IEEE International conference of Moroccan Geomatics (Morgeo). :1—7.

The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.

2020-11-02
Fedosova, Tatyana V., Masych, Marina A., Afanasvev, Anton A., Liabakh, Nikolay N..  2019.  Development of a Decision Support System for Intellectual Property Utilization. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :482—485.
This paper outlines the concept of intellectual property utilization and develops a framework for the targeted generation of intellectual property for the benefit of various economic entities. The study proposes two types of the decision support system: (i) based on deterministic logic, and (ii) based on multi-agent systems. The results of the study offer the development of a mathematical approach to the interaction process of agents in multi-agent systems, inter alia related to the targeted generation of intellectual property.
2020-08-07
Zhu, Tianqing, Yu, Philip S..  2019.  Applying Differential Privacy Mechanism in Artificial Intelligence. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1601—1609.
Artificial Intelligence (AI) has attracted a large amount of attention in recent years. However, several new problems, such as privacy violations, security issues, or effectiveness, have been emerging. Differential privacy has several attractive properties that make it quite valuable for AI, such as privacy preservation, security, randomization, composition, and stability. Therefore, this paper presents differential privacy mechanisms for multi-agent systems, reinforcement learning, and knowledge transfer based on those properties, which proves that current AI can benefit from differential privacy mechanisms. In addition, the previous usage of differential privacy mechanisms in private machine learning, distributed machine learning, and fairness in models is discussed, bringing several possible avenues to use differential privacy mechanisms in AI. The purpose of this paper is to deliver the initial idea of how to integrate AI with differential privacy mechanisms and to explore more possibilities to improve AIs performance.
2020-07-16
Velmovitsky, Pedro Elkind, Viana, Marx, Cirilo, Elder, Milidiu, Ruy Luiz, Pelegrini Morita, Plinio, Lucena, Carlos José Pereira de.  2019.  Promoting Reusability and Extensibility in the Engineering of Domain-Specific Conversational Systems. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :473—478.

Conversational systems are computer programs that interact with users using natural language. Considering the complexity and interaction of the different components involved in building intelligent conversational systems that can perform diverse tasks, a promising approach to facilitate their development is by using multiagent systems (MAS). This paper reviews the main concepts and history of conversational systems, and introduces an architecture based on MAS. This architecture was designed to support the development of conversational systems in the domain chosen by the developer while also providing a reusable built-in dialogue control. We present a practical application in the healthcare domain. We observed that it can help developers to create conversational systems in different domains while providing a reusable and centralized dialogue control. We also present derived lessons learned that can be helpful to steer future research on engineering domain-specific conversational systems.

2019-12-09
Tsochev, Georgi, Trifonov, Roumen, Yoshinov, Radoslav, Manolov, Slavcho, Pavlova, Galya.  2019.  Improving the Efficiency of IDPS by Using Hybrid Methods from Artificial Intelligence. 2019 International Conference on Information Technologies (InfoTech). :1-4.

The present paper describes some of the results obtained in the Faculty of Computer Systems and Technology at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. Also is made a survey about existing hybrid methods, which are using several artificial intelligent methods for cyber defense. The paper introduces a model for intrusion detection systems where multi agent systems are the bases and artificial intelligence are applicable by the means simple real-time models constructed in laboratory environment.

2019-02-25
Hassan, M. H., Mostafa, S. A., Mustapha, A., Wahab, M. H. Abd, Nor, D. Md.  2018.  A Survey of Multi-Agent System Approach in Risk Assessment. 2018 International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR). :1–6.
Risk Assessment is a foundation of decision-making about a future project behaviour or action. The related decision made might entail further analyzes to perform risk- reduction. The risk is a general phenomenon that takes different depicts and types. Static risk and its circumstances do not significantly change over time while dynamic risk arises out of the changes in interrelated circumstances. A Multi-Agent System (MAS) approach has become a popular tool to tackle different problems that relate to risk. The MAS helps in the decision aid processes and when responding to the consequences of the risk. This paper surveys some of the existing methods and techniques of risk assessment in different application domains. The survey focuses on the employment of MAS approach in risk assessment. The survey outcomes an illustration of the roles and contributions of the MAS in the Dynamic Risk Assessment (DRA) field.
2017-03-08
Tatarenko, T..  2015.  1-recall reinforcement learning leading to an optimal equilibrium in potential games with discrete and continuous actions. 2015 54th IEEE Conference on Decision and Control (CDC). :6749–6754.

Game theory serves as a powerful tool for distributed optimization in multiagent systems in different applications. In this paper we consider multiagent systems that can be modeled as a potential game whose potential function coincides with a global objective function to be maximized. This approach renders the agents the strategic decision makers and the corresponding optimization problem the problem of learning an optimal equilibruim point in the designed game. In distinction from the existing works on the topic of payoff-based learning, we deal here with the systems where agents have neither memory nor ability for communication, and they base their decision only on the currently played action and the experienced payoff. Because of these restrictions, we use the methods of reinforcement learning, stochastic approximation, and learning automata extensively reviewed and analyzed in [3], [9]. These methods allow us to set up the agent dynamics that moves the game out of inefficient Nash equilibria and leads it close to an optimal one in both cases of discrete and continuous action sets.

2015-05-05
de Oliveira Saraiva, F., Nobuhiro Asada, E..  2014.  Multi-agent systems applied to topological reconfiguration of smart power distribution systems. Neural Networks (IJCNN), 2014 International Joint Conference on. :2812-2819.

One of the various features expected for a smart power distribution system - a smart grid in the power distribution level - is the possibility of the fully automated operation for certain control actions. Although this is very expected, it requires various logic, sensor and actuator technologies in a system which, historically, has a low level of automation. One of the most analyzed problems for the distribution system is the topology reconfiguration. The reconfiguration has been applied to various objectives: minimization of power losses, voltage regulation, load balancing, to name a few. The solution method in most cases is centralized and its application is not in real-time. From the new perspectives of advanced distribution systems, fast and adaptive response of the control actions are required, specially in the presence of alternative generation sources and electrical vehicles. In this context, the multi-agent system, which embeds the necessary control actions and decision making is proposed for the topology reconfiguration aiming the loss reduction. The concept of multi-agent system for distribution system is proposed and two case studies with 11-Bus and 16-Bus system are presented.
 

2015-04-30
Montague, E., Jie Xu, Chiou, E..  2014.  Shared Experiences of Technology and Trust: An Experimental Study of Physiological Compliance Between Active and Passive Users in Technology-Mediated Collaborative Encounters. Human-Machine Systems, IEEE Transactions on. 44:614-624.

The aim of this study is to examine the utility of physiological compliance (PC) to understand shared experience in a multiuser technological environment involving active and passive users. Common ground is critical for effective collaboration and important for multiuser technological systems that include passive users since this kind of user typically does not have control over the technology being used. An experiment was conducted with 48 participants who worked in two-person groups in a multitask environment under varied task and technology conditions. Indicators of PC were measured from participants' cardiovascular and electrodermal activities. The relationship between these PC indicators and collaboration outcomes, such as performance and subjective perception of the system, was explored. Results indicate that PC is related to group performance after controlling for task/technology conditions. PC is also correlated with shared perceptions of trust in technology among group members. PC is a useful tool for monitoring group processes and, thus, can be valuable for the design of collaborative systems. This study has implications for understanding effective collaboration.