Visible to the public Biblio

Filters: Keyword is Web Caching  [Clear All Filters]
2022-01-31
Baumann, Lukas, Heftrig, Elias, Shulman, Haya, Waidner, Michael.  2021.  The Master and Parasite Attack. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :141—148.
We explore a new type of malicious script attacks: the persistent parasite attack. Persistent parasites are stealthy scripts, which persist for a long time in the browser's cache. We show to infect the caches of victims with parasite scripts via TCP injection. Once the cache is infected, we implement methodologies for propagation of the parasites to other popular domains on the victim client as well as to other caches on the network. We show how to design the parasites so that they stay long time in the victim's cache not restricted to the duration of the user's visit to the web site. We develop covert channels for communication between the attacker and the parasites, which allows the attacker to control which scripts are executed and when, and to exfiltrate private information to the attacker, such as cookies and passwords. We then demonstrate how to leverage the parasites to perform sophisticated attacks, and evaluate the attacks against a range of applications and security mechanisms on popular browsers. Finally we provide recommendations for countermeasures.
Iqbal, Farkhund, Motyliński, Michał, MacDermott, Áine.  2021.  Discord Server Forensics: Analysis and Extraction of Digital Evidence. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—8.
In recent years we can observe that digital forensics is being applied to a variety of domains as nearly any data can become valuable forensic evidence. The sheer scope of web-based investigations provides a vast amount of information. Due to a rapid increase in the number of cybercrimes the importance of application-specific forensics is greater than ever. Criminals use the application not only to communicate but also to facilitate crimes. It came to our attention that the gaming chat application Discord is one of them. Discord allows its users to send text messages as well as exchange image, video, and audio files. While Discord's community is not as large as that of the most popular messaging apps the stable growth of its userbase and recent incidents indicate that it is used by criminals. This paper presents our research into the digital forensic analysis of Discord client-side artefacts and presents experimental development of a tool for extraction, analysis, and presentation of the data from Discord application. The work then proposes a solution in form of a tool, `DiscFor', that can retrieve information from the application's local files and cache storage.
Liu, Ying, Han, Yuzheng, Zhang, Ao, Xia, Xiaoyu, Chen, Feifei, Zhang, Mingwei, He, Qiang.  2021.  QoE-aware Data Caching Optimization with Budget in Edge Computing. 2021 IEEE International Conference on Web Services (ICWS). :324—334.
Edge data caching has attracted tremendous attention in recent years. Service providers can consider caching data on nearby locations to provide service for their app users with relatively low latency. The key to enhance the user experience is appropriately choose to cache data on the suitable edge servers to achieve the service providers' objective, e.g., minimizing data retrieval latency and minimizing data caching cost, etc. However, Quality of Experience (QoE), which impacts service providers' caching benefit significantly, has not been adequately considered in existing studies of edge data caching. This is not a trivial issue because QoE and Quality-of-Service (QoS) are not correlated linearly. It significantly complicates the formulation of cost-effective edge data caching strategies under the caching budget, limiting the number of cache spaces to hire on edge servers. We consider this problem of QoE-aware edge data caching in this paper, intending to optimize users' overall QoE under the caching budget. We first build the optimization model and prove the NP-completeness about this problem. We propose a heuristic approach and prove its approximation ratio theoretically to solve the problem of large-scale scenarios efficiently. We have done extensive experiments to demonstrate that the MPSG algorithm we propose outperforms state-of-the-art approaches by at least 68.77%.
Patel, Jatin, Halabi, Talal.  2021.  Optimizing the Performance of Web Applications in Mobile Cloud Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :33—37.
Cloud computing adoption is on the rise. Many organizations have decided to shift their workload to the cloud to benefit from the scalability, resilience, and cost reduction characteristics. Mobile Cloud Computing (MCC) is an emerging computing paradigm that also provides many advantages to mobile users. Mobile devices function on wireless internet connectivity, which entails issues of limited bandwidth and network congestion. Hence, the primary focus of Web applications in MCC is on improving performance by quickly fulfilling customer's requests to improve service satisfaction. This paper investigates a new approach to caching data in these applications using Redis, an in-memory data store, to enhance Quality of Service. We highlight the two implementation approaches of fetching the data of an application either directly from the database or from the cache. Our experimental analysis shows that, based on performance metrics such as response time, throughput, latency, and number of hits, the caching approach achieves better performance by speeding up the data retrieval by up to four times. This improvement is of significant importance in mobile devices considering their limitation of network bandwidth and wireless connectivity.
Ashihara, Takakazu, Kamiyama, Noriaki.  2021.  Detecting Cache Pollution Attacks Using Bloom Filter. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1—6.
To provide web browsing and video streaming services with desirable quality, cache servers have been widely used to deliver digital data to users from locations close to users. For example, in the MEC (mobile edge computing), cache memories are provided at base stations of 5G cellular networks to reduce the traffic load in the backhaul networks. Cache servers are also connected to many edge routers in the CDN (content delivery network), and they are provided at routers in the ICN (information-centric networking). However, the cache pollution attack (CPA) which degrades the cache hit ratio by intentionally sending many requests to non-popular contents will be a serious threat in the cache networks. Quickly detecting the CPA hosts and protecting the cache servers is important to effectively utilize the cache resources. Therefore, in this paper, we propose a method of accurately detecting the CPA hosts using a limited amount of memory resources. The proposed method is based on a Bloom filter using the combination of identifiers of host and content as keys. We also propose to use two Bloom filters in parallel to continuously detect CPA hosts. Through numerical evaluations, we show that the proposed method suppresses the degradation of the cache hit ratio caused by the CPA while avoiding the false identification of legitimate hosts.
Al-Qtiemat, Eman, Jafar, Iyad.  2021.  Intelligent Cache Replacement Algorithm for Web Proxy Caching based on Multi-level K-means Clustering. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :278—282.
Proxy web caching is usually employed to maximize the efficiency and utilization of the network and the origin servers while reducing the request latency. However, and due to the limited cache size, some replacement policy has to be enforced in order to decide on the object(s) to be evicted from the cache once it is full. This paper introduces the use of the K-mean clustering to categorize the objects in the cache into groups of different priorities. This categorization is then used for replacement purposes such that the object(s) of lowest priority are chosen for eviction. The proposed improved the hit rate and the byte hit rate of the cache when compared to conventional and intelligent web proxy caching algorithms.
Shvidkiy, A. A., Savelieva, A. A., Zarubin, A. A..  2021.  Caching Methods Analysis for Improving Distributed Storage Systems Performance. 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO. :1—5.
The object of the research is distributed software-defined storage systems, as well as methods of caching disk devices. It is important for improving the performance of storage systems, which is relevant in modern conditions. In this article, an assessment of the possibility of improving performance through the use of various caching methods is made, as well as experimental research and analysis of the results obtained. The parameters of the application's operation with the disk subsystem have been determined. The results of experiments are presented - testing was carried out on a deployed architecture of a distributed storage with two types of caching, the results are combined in graphs. Conclusions are drawn, including on the prospects for further research.
Squarcina, Marco, Calzavara, Stefano, Maffei, Matteo.  2021.  The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches. 2021 IEEE Security and Privacy Workshops (SPW). :432—443.
Service workers boost the user experience of modern web applications by taking advantage of the Cache API to improve responsiveness and support offline usage. In this paper, we present the first security analysis of the threats posed by this programming practice, identifying an attack with major security implications. In particular, we show how a traditional XSS attack can abuse the Cache API to escalate into a personin-the-middle attack against cached content, thus compromising its confidentiality and integrity. Remarkably, this attack enables new threats which are beyond the scope of traditional XSS. After defining the attack, we study its prevalence in the wild, finding that the large majority of the sites which register service workers using the Cache API are vulnerable as long as a single webpage in the same origin of the service worker is affected by an XSS. Finally, we propose a browser-side countermeasure against this attack, and we analyze its effectiveness and practicality in terms of security benefits and backward compatibility with existing web applications.
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna.  2021.  Performance Comparison of Swarm Intelligence Algorithms for Web Caching Strategy. 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :45—51.
Web caching is one strategy that can be used to speed up response times by storing frequently accessed data in the cache server. Given the cache server limited capacity, it is necessary to determine the priority of cached data that can enter the cache server. This study simulated cached data prioritization based on an objective function as a characteristic of problem-solving using an optimization approach. The objective function of web caching is formulated based on the variable data size, count access, and frequency-time access. Then we use the knapsack problem method to find the optimal solution. The Simulations run three swarm intelligence algorithms Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Binary Particle Swarm Optimization (BPSO), divided into several scenarios. The simulation results show that the GA algorithm relatively stable and fast to convergence. The ACO algorithm has the advantage of a non-random initial solution but has followed the pheromone trail. The BPSO algorithm is the fastest, but the resulting solution quality is not as good as ACO and GA.
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
2021-05-18
Wei, Hanlin, Bai, Guangdong, Luo, Zongwei.  2020.  Foggy: A New Anonymous Communication Architecture Based on Microservices. 2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS). :135–144.
This paper presents Foggy, an anonymous communication system focusing on providing users with anonymous web browsing. Foggy provides a microservice-based proxy for web browsing and other low-latency network activities without exposing users' metadata and browsed content to adversaries. It is designed with decentralized information management, web caching, and configurable service selection. Although Foggy seems to be more centralized compared with Tor, it gains an advantage in manageability while retaining anonymity. Foggy can be deployed by several agencies to become more decentralized. We prototype Foggy and test its performance. Our experiments show Foggy's low latency and deployability, demonstrating its potential to be a commercial solution for real-world deployment.
Intharawijitr, Krittin, Harvey, Paul, Imai, Pierre.  2020.  A Feasibility Study of Cache in Smart Edge Router for Web-Access Accelerator. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). :360–365.
Regardless of the setting, edge computing has drawn much attention from both the academic and industrial communities. For edge computing, content delivery networks are both a concrete and production deployable use case. While viable at the WAN or telco edge scale, it is unclear if this extends to others, such as in home WiFi routers, as has been assumed by some. In this work-in-progress, we present an initial study on the viability of using smart edge WiFi routers as a caching location. We describe the simulator we created to test this, as well as the analysis of the results obtained. We use 1 day of e-commerce web log traffic from a public data set, as well as a sampled subset of our own site - part of an ecosystem of over 111 million users. We show that in the best case scenario, smart edge routers are inappropriate for e-commerce web caching.
Wingerath, Wolfram, Gessert, Felix, Witt, Erik, Kuhlmann, Hannes, Bücklers, Florian, Wollmer, Benjamin, Ritter, Norbert.  2020.  Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2020.  General Knapsack Bounds of Web Caching Performance Regarding the Properties of each Cacheable Object. 2020 IFIP Networking Conference (Networking). :821–826.
Caching strategies have been evaluated and compared in many studies, most often via simulation, but also in analytic methods. Knapsack solutions provide a general analytical approach for upper bounds on web caching performance. They assume objects of maximum (value/size) ratio being selected as cache content, with flexibility to define the caching value. Therefore the popularity, cost, size, time-to-live restrictions etc. per object can be included an overall caching goal, e.g., for reducing delay and/or transport path length in content delivery. The independent request model (IRM) leads to basic knapsack bounds for static optimum cache content. We show that a 2-dimensional (2D-)knapsack solution covers arbitrary request pattern, which selects dynamically changing content yielding maximum caching value for any predefined request sequence. Moreover, Belady's optimum strategy for clairvoyant caching is identified as a special case of our 2D-knapsack solution when all objects are unique. We also summarize a comprehensive picture of the demands and efficiency criteria for web caching, including updating speed and overheads. Our evaluations confirm significant performance gaps from LRU to advanced GreedyDual and score-based web caching methods and to the knapsack bounds.
Niloy, Nishat Tasnim, Islam, Md. Shariful.  2020.  IntellCache: An Intelligent Web Caching Scheme for Multimedia Contents. 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR). :1–6.
The traditional reactive web caching system is getting less popular day by day due to its inefficiency in handling the overwhelming requests for multimedia content. An intelligent web caching system intends to take optimal cache decisions by predicting future popular contents (FPC) proactively. In recent years, a few approaches have proposed some intelligent caching system where they were concerned about proactive caching. Those works intensified the importance of FPC prediction using the prediction models. However, only FPC prediction may not help to get the optimal solution in every scenario. In this paper, a technique named IntellCache has been proposed that increases the caching efficiency by taking a cache decision i.e. content storing decision before storing the predicted FPC. Different deep learning models such as- multilayer perceptron (MLP), Long short-term memory (LSTM) of Recurrent Neural Network (RNN) and ConvLSTM a combination of LSTM and Convolutional Neural Network (CNN) are compared to identify the most efficient model for FPC. The information on the contents of 18 years from the MovieLens data repository has been mined to evaluate the proposed approach. Results show that this proposed scheme outperforms previous solutions by achieving a higher cache hit ratio and lower average delay and thus, ensures users' satisfaction.
2020-02-18
Fattahi, Saeideh, Yazdani, Reza, Vahidipour, Seyyed Mehdi.  2019.  Discovery of Society Structure in A Social Network Using Distributed Cache Memory. 2019 5th International Conference on Web Research (ICWR). :264–269.

Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.

Saverimoutou, Antoine, Mathieu, Bertrand, Vaton, Sandrine.  2019.  Influence of Internet Protocols and CDN on Web Browsing. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Web ecosystem has been evolving over the past years and new Internet protocols, namely HTTP/2 over TLS/TCP and QUIC/UDP, are now used to deliver Web contents. Similarly, CDNs (Content Delivery Network) are deployed worldwide, caching contents close to end-users to optimize web browsing quality. We present in this paper an analysis of the influence of the Internet protocols and CDN on the Top 10,000 Alexa websites, based on a 12-month measurement campaign (from April 2018 to April 2019) performed via our tool Web View [1]. Part of our measurements are made public, represented on a monitoring website1, showing the results for the Top 50 Alexa Websites plus few specific websites and 8 french websites, suggested by the French Agency in charge of regulating telecommunications. Our analysis of this long-term measurement campaign allows to better analyze the delivery of public websites. For instance, it shows that even if some argue that QUIC optimizes the quality, it is not observed in the real-life since QUIC is not largely deployed. Our method for analyzing CDN delivery in the Web browsing allows us to evaluate its influence, which is important since their usage can decrease the web pages' loading time, on average 43.1% with HTTP/2 and 38.5% with QUIC, when requesting a second time the same home page.

Quan, Guocong, Tan, Jian, Eryilmaz, Atilla.  2019.  Counterintuitive Characteristics of Optimal Distributed LRU Caching Over Unreliable Channels. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :694–702.
Least-recently-used (LRU) caching and its variants have conventionally been used as a fundamental and critical method to ensure fast and efficient data access in computer and communication systems. Emerging data-intensive applications over unreliable channels, e.g., mobile edge computing and wireless content delivery networks, have imposed new challenges in optimizing LRU caching systems in environments prone to failures. Most existing studies focus on reliable channels, e.g., on wired Web servers and within data centers, which have already yielded good insights with successful algorithms on how to reduce cache miss ratios. Surprisingly, we show that these widely held insights do not necessarily hold true for unreliable channels. We consider a single-hop multi-cache distributed system with data items being dispatched by random hashing. The objective is to achieve efficient cache organization and data placement. The former allocates the total memory space to each of the involved caches. The latter decides data routing strategies and data replication schemes. Analytically we characterize the unreliable LRU caches by explicitly deriving their asymptotic miss probabilities. Based on these results, we optimize the system design. Remarkably, these results sometimes are counterintuitive, differing from the ones obtained for reliable caches. We discover an interesting phenomenon: asymmetric cache organization is optimal even for symmetric channels. Specifically, even when channel unreliability probabilities are equal, allocating the cache spaces unequally can achieve a better performance. We also propose an explicit unequal allocation policy that outperforms the equal allocation. In addition, we prove that splitting the total cache space into separate LRU caches can achieve a lower asymptotic miss probability than resource pooling that organizes the total space in a single LRU cache. These results provide new and even counterintuitive insights that motivate novel designs for caching systems over unreliable channels. They can potentially be exploited to further improve the system performance in real practice.
Kalan, Reza Shokri, Sayit, Muge, Clayman, Stuart.  2019.  Optimal Cache Placement and Migration for Improving the Performance of Virtualized SAND. 2019 IEEE Conference on Network Softwarization (NetSoft). :78–83.

Nowadays, video streaming over HTTP is one of the most dominant Internet applications, using adaptive video techniques. Network assisted approaches have been proposed and are being standardized in order to provide high QoE for the end-users of such applications. SAND is a recent MPEG standard where DASH Aware Network Elements (DANEs) are introduced for this purpose. As web-caches are one of the main components of the SAND architecture, the location and the connectivity of these web-caches plays an important role in the user's QoE. The nature of SAND and DANE provides a good foundation for software controlled virtualized DASH environments, and in this paper, we propose a cache location algorithm and a cache migration algorithm for virtualized SAND deployments. The optimal locations for the virtualized DANEs is determined by an SDN controller and migrates it based on gathered statistics. The performance of the resulting system shows that, when SDN and NFV technologies are leveraged in such systems, software controlled virtualized approaches can provide an increase in QoE.

Talluri, Sacheendra, Iosup, Alexandru.  2019.  Efficient Estimation of Read Density When Caching for Big Data Processing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :502–507.

Big data processing systems are becoming increasingly more present in cloud workloads. Consequently, they are starting to incorporate more sophisticated mechanisms from traditional database and distributed systems. We focus in this work on the use of caching policies, which for big data raise important new challenges. Not only they must respond to new variants of the trade-off between hit rate, response time, and the space consumed by the cache, but they must do so at possibly higher volume and velocity than web and database workloads. Previous caching policies have not been tested experimentally with big data workloads. We address these challenges in this work. We propose the Read Density family of policies, which is a principled approach to quantify the utility of cached objects through a family of utility functions that depend on the frequency of reads of an object. We further design the Approximate Histogram, which is a policy-based technique based on an array of counters. This technique promises to achieve runtime-space efficient computation of the metric required by the cache policy. We evaluate through trace-based simulation the caching policies from the Read Density family, and compare them with over ten state-of-the-art alternatives. We use two workload traces representative for big data processing, collected from commercial Spark and MapReduce deployments. While we achieve comparable performance to the state-of-art with less parameters, meaningful performance improvement for big data workloads remain elusive.

Liu, Ying, He, Qiang, Zheng, Dequan, Zhang, Mingwei, Chen, Feifei, Zhang, Bin.  2019.  Data Caching Optimization in the Edge Computing Environment. 2019 IEEE International Conference on Web Services (ICWS). :99–106.

With the rapid increase in the use of mobile devices in people's daily lives, mobile data traffic is exploding in recent years. In the edge computing environment where edge servers are deployed around mobile users, caching popular data on edge servers can ensure mobile users' fast access to those data and reduce the data traffic between mobile users and the centralized cloud. Existing studies consider the data cache problem with a focus on the reduction of network delay and the improvement of mobile devices' energy efficiency. In this paper, we attack the data caching problem in the edge computing environment from the service providers' perspective, who would like to maximize their venues of caching their data. This problem is complicated because data caching produces benefits at a cost and there usually is a trade-off in-between. In this paper, we formulate the data caching problem as an integer programming problem, and maximizes the revenue of the service provider while satisfying a constraint for data access latency. Extensive experiments are conducted on a real-world dataset that contains the locations of edge servers and mobile users, and the results reveal that our approach significantly outperform the baseline approaches.

Pasyeka, Mykola, Sheketa, Vasyl, Pasieka, Nadiia, Chupakhina, Svitlana, Dronyuk, Ivanna.  2019.  System Analysis of Caching Requests on Network Computing Nodes. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :216–222.

A systematic study of technologies and concepts used for the design and construction of distributed fail-safe web systems has been conducted. The general principles of the design of distributed web-systems and information technologies that are used in the design of web-systems are considered. As a result of scientific research, it became clear that data backup is a determining attribute of most web systems serving. Thus, the main role in building modern web systems is to scaling them. Scaling in distributed systems is used when performing a particular operation requires a large amount of computing resources. There are two scaling options, namely vertical and horizontal. Vertical scaling is to increase the performance of existing components in order to increase overall productivity. However, for the construction of distributed systems, use horizontal scaling. Horizontal scaling is that the system is split into small components and placed on various physical computers. This approach allows the addition of new nodes to increase the productivity of the web system as a whole.

Zhang, Detian, Liu, An, Jin, Gaoming, Li, Qing.  2019.  Edge-Based Shortest Path Caching for Location-Based Services. 2019 IEEE International Conference on Web Services (ICWS). :320–327.

Shortest path queries on road networks are widely used in location-based services (LBS), e.g., finding the shortest route from my home to the airport through Google Maps. However, when there are a large number of path queries arrived concurrently or in a short while, an LBS provider (e.g., Google Maps) has to endure a high workload and then may lead to a long response time to users. Therefore, path caching services are utilized to accelerate large-scale path query processing, which try to store the historical path results and reuse them to answer the coming queries directly. However, most of existing path caches are organized based on nodes of paths; hence, the underlying road network topology is still needed to answer a path query when its querying origin or destination lies on edges. To overcome this limitation, we propose an edge-based shortest path cache in this paper that can efficiently handle queries without needing any road information, which is much more practical in the real world. We achieve this by designing a totally new edge-based path cache structure, an efficient R-tree-based cache lookup algorithm, and a greedy-based cache construction algorithm. Extensive experiments on a real road network and real point-of-interest datasets are conducted, and the results show the efficiency, scalability, and applicability of our proposed caching techniques.

Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2019.  Fast and Efficient Web Caching Methods Regarding the Size and Performance Measures per Data Object. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.

Caching methods are developed since 50 years for paging in CPU and database systems, and since 25 years for web caching as main application areas among others. Pages of unique size are usual in CPU caches, whereas web caches are storing data chunks of different size in a widely varying range. We study the impact of different object sizes on the performance and the overhead of web caching. This entails different caching goals, starting from the byte and object hit ratio to a generalized value hit ratio for optimized costs and benefits of caching regarding traffic engineering (TE), reduced delays and other QoS measures. The selection of the cache contents turns out to be crucial for the web cache efficiency with awareness of the size and other properties in a score for each object. We introduce a new class of rank exchange caching methods and show how their performance compares to other strategies with extensions needed to include the size and scores for QoS and TE caching goals. Finally, we derive bounds on the object, byte and value hit ratio for the independent request model (IRM) based on optimum knapsack solutions of the cache content.

Tung Hoang, Xuan, Dung Bui, Ngoc.  2019.  An Enhanced Semantic-Based Cache Replacement Algorithm for Web Systems. 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF). :1–6.

As Web traffics is increasing on the Internet, caching solutions for Web systems are becoming more important since they can greatly expand system scalability. An important part of a caching solution is cache replacement policy, which is responsible for selecting victim items that should be removed in order to make space for new objects. Typical replacement policies used in practice only take advantage of temporal reference locality by removing the least recently/frequently requested items from the cache. Although those policies work well in memory or filesystem cache, they are inefficient for Web systems since they do not exploit semantic relationship between Web items. This paper presents a semantic-aware caching policy that can be used in Web systems to enhance scalability. The proposed caching mechanism defines semantic distance from a web page to a set of pivot pages and use the semantic distances as a metric for choosing victims. Also, it use a function-based metric that combines access frequency and cache item size for tie-breaking. Our simulations show that out enhancements outperform traditional methods in terms of hit rate, which can be useful for websites with many small and similar-in-size web objects.