Visible to the public Biblio

Filters: Keyword is formal modeling  [Clear All Filters]
2020-07-20
Jakaria, A H M, Rahman, Mohammad Ashiqur, Gokhale, Aniruddha.  2019.  A Formal Model for Resiliency-Aware Deployment of SDN: A SCADA-Based Case Study. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.

The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.

2020-07-16
Yuan, Haoxuan, Li, Fang, Huang, Xin.  2019.  A Formal Modeling and Verification Framework for Service Oriented Intelligent Production Line Design. 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS). :173—178.

The intelligent production line is a complex application with a large number of independent equipment network integration. In view of the characteristics of CPS, the existing modeling methods cannot well meet the application requirements of large scale high-performance system. a formal simulation verification framework and verification method are designed for the performance constraints such as the real-time and security of the intelligent production line based on soft bus. A model-based service-oriented integration approach is employed, which adopts a model-centric way to automate the development course of the entire software life cycle. Developing experience indicate that the proposed approach based on the formal modeling and verification framework in this paper can improve the performance of the system, which is also helpful to achieve the balance of the production line and maintain the reasonable use rate of the processing equipment.

2019-03-11
Rao, Aakarsh, Rozenblit, Jerzy, Lysecky, Roman, Sametinger, Johannes.  2018.  Trustworthy Multi-modal Framework for Life-critical Systems Security. Proceedings of the Annual Simulation Symposium. :17:1–17:9.
With the advent of network connectivity and complex software applications, life-critical systems like medical devices are subject to a plethora of security risks and vulnerabilities. Security threats and attacks exploiting these vulnerabilities have been shown to compromise patient safety by hampering essential functionality. This necessitates incorporating security from the very design of software. Isolation of software functionality into different modes and switching between them based on risk assessment, while maintaining a fail-safe mode ensuring device's essential functionality is a compelling design. Formal modeling is an essential ingredient for verification of such a design. Hence, in this paper, we formally model a trustworthy multi-modal framework for life-critical systems security and in turn safety. We formalize a multiple mode based software design approach of operation with a fail-safe mode that maintains critical functionality. We ensure trustworthyness by formalizing a composite risk model incorporated into the design for run-time risk assessment and management.
2018-05-24
Joshaghani, R., Mehrpouyan, H..  2017.  A Model-Checking Approach for Enforcing Purpose-Based Privacy Policies. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :178–179.

With the growth of Internet in many different aspects of life, users are required to share private information more than ever. Hence, users need a privacy management tool that can enforce complex and customized privacy policies. In this paper, we propose a privacy management system that not only allows users to define complex privacy policies for data sharing actions, but also monitors users' behavior and relationships to generate realistic policies. In addition, the proposed system utilizes formal modeling and model-checking approach to prove that information disclosures are valid and privacy policies are consistent with one another.

2018-03-26
Alexopoulos, N., Daubert, J., Mühlhäuser, M., Habib, S. M..  2017.  Beyond the Hype: On Using Blockchains in Trust Management for Authentication. 2017 IEEE Trustcom/BigDataSE/ICESS. :546–553.

Trust Management (TM) systems for authentication are vital to the security of online interactions, which are ubiquitous in our everyday lives. Various systems, like the Web PKI (X.509) and PGP's Web of Trust are used to manage trust in this setting. In recent years, blockchain technology has been introduced as a panacea to our security problems, including that of authentication, without sufficient reasoning, as to its merits.In this work, we investigate the merits of using open distributed ledgers (ODLs), such as the one implemented by blockchain technology, for securing TM systems for authentication. We formally model such systems, and explore how blockchain can help mitigate attacks against them. After formal argumentation, we conclude that in the context of Trust Management for authentication, blockchain technology, and ODLs in general, can offer considerable advantages compared to previous approaches. Our analysis is, to the best of our knowledge, the first to formally model and argue about the security of TM systems for authentication, based on blockchain technology. To achieve this result, we first provide an abstract model for TM systems for authentication. Then, we show how this model can be conceptually encoded in a blockchain, by expressing it as a series of state transitions. As a next step, we examine five prevalent attacks on TM systems, and provide evidence that blockchain-based solutions can be beneficial to the security of such systems, by mitigating, or completely negating such attacks.