Visible to the public Biblio

Found 182 results

Filters: Keyword is Classification algorithms  [Clear All Filters]
2023-09-20
He, Zhenghao.  2022.  Comparison Of Different Machine Learning Methods Applied To Obesity Classification. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :467—472.
Estimation for obesity levels is always an important topic in medical field since it can provide useful guidance for people that would like to lose weight or keep fit. The article tries to find a model that can predict obesity and provides people with the information of how to avoid overweight. To be more specific, this article applied dimension reduction to the data set to simplify the data and tried to Figure out a most decisive feature of obesity through Principal Component Analysis (PCA) based on the data set. The article also used some machine learning methods like Support Vector Machine (SVM), Decision Tree to do prediction of obesity and wanted to find the major reason of obesity. In addition, the article uses Artificial Neural Network (ANN) to do prediction which has more powerful feature extraction ability to do this. Finally, the article found that family history of obesity is the most decisive feature, and it may because of obesity may be greatly affected by genes or the family eating diet may have great influence. And both ANN and Decision tree’s accuracy of prediction is higher than 90%.
Winahyu, R R Kartika, Somantri, Maman, Nurhayati, Oky Dwi.  2022.  Predicting Creditworthiness of Smartphone Users in Indonesia during the COVID-19 pandemic using Machine Learning. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). :223—227.
In this research work, we attempted to predict the creditworthiness of smartphone users in Indonesia during the COVID-19 pandemic using machine learning. Principal Component Analysis (PCA) and Kmeans algorithms are used for the prediction of creditworthiness with the used a dataset of 1050 respondents consisting of twelve questions to smartphone users in Indonesia during the COVID-19 pandemic. The four different classification algorithms (Logistic Regression, Support Vector Machine, Decision Tree, and Naive Bayes) were tested to classify the creditworthiness of smartphone users in Indonesia. The tests carried out included testing for accuracy, precision, recall, F1-score, and Area Under Curve Receiver Operating Characteristics (AUCROC) assesment. Logistic Regression algorithm shows the perfect performances whereas Naïve Bayes (NB) shows the least. The results of this research also provide new knowledge about the influential and non-influential variables based on the twelve questions conducted to the respondents of smartphone users in Indonesia during the COVID-19 pandemic.
2023-08-24
Cao, Yaofu, Li, Tianquan, Li, Xiaomeng, Zhao, Jincheng, Liu, Junwen, Yan, Junlu.  2022.  Research on network security behavior audit method of power industrial control system operation support cloud platform based on FP-Growth association rule algorithm. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :409–412.
With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
2023-07-31
He, Yang, Gao, Xianzhou, Liang, Fei, Yang, Ruxia.  2022.  A Classification Method of Power Unstructured Encrypted Data Based on Fuzzy Data Matching. 2022 3rd International Conference on Intelligent Design (ICID). :294—298.
With the development of the digital development transformation of the power grid, the classification of power unstructured encrypted data is an important basis for data security protection. However, most studies focus on exact match classification or single-keyword fuzzy match classification. This paper proposes a fuzzy matching classification method for power unstructured encrypted data. The data owner generates an index vector based on the power unstructured file, and the data user generates a query vector by querying the file through the same process. The index and query vector are uploaded to the cloud server in encrypted form, and the cloud server calculates the relevance score and sorts it, and returns the classification result with the highest score to the user. This method realizes the multi-keyword fuzzy matching classification of unstructured encrypted data of electric power, and through the experimental simulation of a large number of data sets, the effect and feasibility of the method are proved.
2023-07-21
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.  2022.  Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
2023-07-14
Narayanan, K. Lakshmi, Naresh, R..  2022.  A Effective Encryption and Different Integrity Schemes to Improve the Performance of Cloud Services. 2022 International Conference for Advancement in Technology (ICONAT). :1–5.
Recent modern era becomes a multi-user environment. It's hard to store and retrieve data in secure manner at the end user side is a hectic challenge. Difference of Cloud computing compare to Network Computing can be accessed from multiple company servers. Cloud computing makes the users and organization to opt their services. Due to effective growth of the Cloud Technology. Data security, Data Privacy key validation and tracing of user are severe concern. It is hard to trace malicious users who misuse the secrecy. To reduce the rate of misuse in secrecy user revocation is used. Audit Log helps in Maintaining the history of malicious user also helps in maintaining the data integrity in cloud. Cloud Monitoring Metrics helps in the evaluation survey study of different Metrics. In this paper we give an in depth survey about Back-end of cloud services their concerns and the importance of privacy in cloud, Privacy Mechanism in cloud, Ways to Improve the Privacy in cloud, Hazards, Cloud Computing Issues and Challenges we discuss the need of cryptography and a survey of existing cryptographic algorithms. We discuss about the auditing and its classifications with respect to comparative study. In this paper analyzed various encryption schemes and auditing schemes with several existing algorithms which help in the improvement of cloud services.
2023-06-30
Bhuyan, Hemanta Kumar, Arun Sai, T., Charan, M., Vignesh Chowdary, K., Brahma, Biswajit.  2022.  Analysis of classification based predicted disease using machine learning and medical things model. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
{Health diseases have been issued seriously harmful in human life due to different dehydrated food and disturbance of working environment in the organization. Precise prediction and diagnosis of disease become a more serious and challenging task for primary deterrence, recognition, and treatment. Thus, based on the above challenges, we proposed the Medical Things (MT) and machine learning models to solve the healthcare problems with appropriate services in disease supervising, forecast, and diagnosis. We developed a prediction framework with machine learning approaches to get different categories of classification for predicted disease. The framework is designed by the fuzzy model with a decision tree to lessen the data complexity. We considered heart disease for experiments and experimental evaluation determined the prediction for categories of classification. The number of decision trees (M) with samples (MS), leaf node (ML), and learning rate (I) is determined as MS=20
2023-06-23
Angiulli, Fabrizio, Furfaro, Angelo, Saccá, Domenico, Sacco, Ludovica.  2022.  Evaluating Deep Packet Inspection in Large-scale Data Processing. 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud). :16–23.
The Internet has evolved to the point that gigabytes and even terabytes of data are generated and processed on a daily basis. Such a stream of data is characterised by high volume, velocity and variety and is referred to as Big Data. Traditional data processing tools can no longer be used to process big data, because they were not designed to handle such a massive amount of data. This problem concerns also cyber security, where tools like intrusion detection systems employ classification algorithms to analyse the network traffic. Achieving a high accuracy attack detection becomes harder when the amount of data increases and the algorithms must be efficient enough to keep up with the throughput of a huge data stream. Due to the challenges posed by a big data environment, some monitoring systems have already shifted from deep packet inspection to flow-level inspection. The goal of this paper is to evaluate the applicability of an existing intrusion detection technique that performs deep packet inspection in a big data setting. We have conducted several experiments with Apache Spark to assess the performance of the technique when classifying anomalous packets, showing that it benefits from the use of Spark.
2023-06-22
Manoj, K. Sai.  2022.  DDOS Attack Detection and Prevention using the Bat Optimized Load Distribution Algorithm in Cloud. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :633–642.
Cloud computing provides a great platform for the users to utilize the various computational services in order accomplish their requests. However it is difficult to utilize the computational storage services for the file handling due to the increased protection issues. Here Distributed Denial of Service (DDoS) attacks are the most commonly found attack which will prevent from cloud service utilization. Thus it is confirmed that the DDoS attack detection and load balancing in cloud are most extreme issues which needs to be concerned more for the improved performance. This attained in this research work by measuring up the trust factors of virtual machines in order to predict the most trustable VMs which will be combined together to form the trustable source vector. After trust evaluation, in this work Bat algorithm is utilized for the optimal load distribution which will predict the optimal VM resource for the task allocation with the concern of budget. This method is most useful in the process of detecting the DDoS attacks happening on the VM resources. Finally prevention of DDOS attacks are performed by introducing the Fuzzy Extreme Learning Machine Classifier which will learn the cloud resource setup details based on which DDoS attack detection can be prevented. The overall performance of the suggested study design is performed in a Java simulation model to demonstrate the superiority of the proposed algorithm over the current research method.
2023-06-16
Zhu, Rongzhen, Wang, Yuchen, Bai, Pengpeng, Liang, Zhiming, Wu, Weiguo, Tang, Lei.  2022.  CPSD: A data security deletion algorithm based on copyback command. 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1036—1041.
Data secure deletion operation in storage media is an important function of data security management. The internal physical properties of SSDs are different from hard disks, and data secure deletion of disks can not apply to SSDs directly. Copyback operation is used to improve the data migration performance of SSDs but is rarely used due to error accumulation issue. We propose a data securely deletion algorithm based on copyback operation, which improves the efficiency of data secure deletion without affecting the reliability of data. First, this paper proves that the data secure delete operation takes a long time on the channel bus, increasing the I/O overhead, and reducing the performance of the SSDs. Secondly, this paper designs an efficient data deletion algorithm, which can process read requests quickly. The experimental results show that the proposed algorithm can reduce the response time of read requests by 21% and the response time of delete requests by 18.7% over the existing algorithm.
2023-05-11
Saxena, Aditi, Arora, Akarshi, Saxena, Saumya, Kumar, Ashwni.  2022.  Detection of web attacks using machine learning based URL classification techniques. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–13.
For a long time, online attacks were regarded to pose a severe threat to web - based applications, websites, and clients. It can bypass authentication methods, steal sensitive information from datasets and clients, and also gain ultimate authority of servers. A variety of ways for safeguarding online apps have been developed and used to deal the website risks. Based on the studies about the intersection of cybersecurity and machine learning, countermeasures for identifying typical web assaults have recently been presented (ML). In order to establish a better understanding on this essential topic, it is necessary to study ML methodologies, feature extraction techniques, evaluate datasets, and performance metrics utilised in a systematic manner. In this paper, we go through web security flaws like SQLi, XSS, malicious URLs, phishing attacks, path traversal, and CMDi in detail. We also go through the existing security methods for detecting these threats using machine learning approaches for URL classification. Finally, we discuss potential research opportunities for ML and DL-based techniques in this category, based on a thorough examination of existing solutions in the literature.
2023-04-14
Turnip, Togu Novriansyah, Aruan, Hotma, Siagian, Anita Lasmaria, Siagian, Leonardo.  2022.  Web Browser Extension Development of Structured Query Language Injection Vulnerability Detection Using Long Short-Term Memory Algorithm. 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM). :1—5.
Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Gong, Dehao, Liu, Yunqing.  2022.  A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
2023-02-17
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
Yang, Jin, Liu, Yunqing.  2022.  Countermeasure Against Anti-Sandbox Technology Based on Activity Recognition. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :834–839.
In order to prevent malicious environment, more and more applications use anti-sandbox technology to detect the running environment. Malware often uses this technology against analysis, which brings great difficulties to the analysis of applications. Research on anti-sandbox countermeasure technology based on application virtualization can solve such problems, but there is no good solution for sensor simulation. In order to prevent detection, most detection systems can only use real device sensors, which brings great hidden dangers to users’ privacy. Aiming at this problem, this paper proposes and implements a sensor anti-sandbox countermeasure technology for Android system. This technology uses the CNN-LSTM model to identify the activity of the real machine sensor data, and according to the recognition results, the real machine sensor data is classified and stored, and then an automatic data simulation algorithm is designed according to the stored data, and finally the simulation data is sent back by using the Hook technology for the application under test. The experimental results show that the method can effectively simulate the data characteristics of the acceleration sensor and prevent the triggering of anti-sandbox behaviors.
2023-02-03
Sarasjati, Wendy, Rustad, Supriadi, Purwanto, Santoso, Heru Agus, Muljono, Syukur, Abdul, Rafrastara, Fauzi Adi, Ignatius Moses Setiadi, De Rosal.  2022.  Comparative Study of Classification Algorithms for Website Phishing Detection on Multiple Datasets. 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). :448–452.
Phishing has become a prominent method of data theft among hackers, and it continues to develop. In recent years, many strategies have been developed to identify phishing website attempts using machine learning particularly. However, the algorithms and classification criteria that have been used are highly different from the real issues and need to be compared. This paper provides a detailed comparison and evaluation of the performance of several machine learning algorithms across multiple datasets. Two phishing website datasets were used for the experiments: the Phishing Websites Dataset from UCI (2016) and the Phishing Websites Dataset from Mendeley (2018). Because these datasets include different types of class labels, the comparison algorithms can be applied in a variety of situations. The tests showed that Random Forest was better than other classification methods, with an accuracy of 88.92% for the UCI dataset and 97.50% for the Mendeley dataset.
Roobini, M.S., Srividhya, S.R., Sugnaya, Vennela, Kannekanti, Nikhila, Guntumadugu.  2022.  Detection of SQL Injection Attack Using Adaptive Deep Forest. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Injection attack is one of the best 10 security dangers declared by OWASP. SQL infusion is one of the main types of attack. In light of their assorted and quick nature, SQL injection can detrimentally affect the line, prompting broken and public data on the site. Therefore, this article presents a profound woodland-based technique for recognizing complex SQL attacks. Research shows that the methodology we use resolves the issue of expanding and debasing the first condition of the woodland. We are currently presenting the AdaBoost profound timberland-based calculation, which utilizes a blunder level to refresh the heaviness of everything in the classification. At the end of the day, various loads are given during the studio as per the effect of the outcomes on various things. Our model can change the size of the tree quickly and take care of numerous issues to stay away from issues. The aftereffects of the review show that the proposed technique performs better compared to the old machine preparing strategy and progressed preparing technique.
2023-01-20
Korkmaz, Yusuf, Huseinovic, Alvin, Bisgin, Halil, Mrdović, Saša, Uludag, Suleyman.  2022.  Using Deep Learning for Detecting Mirroring Attacks on Smart Grid PMU Networks. 2022 International Balkan Conference on Communications and Networking (BalkanCom). :84–89.
Similar to any spoof detection systems, power grid monitoring systems and devices are subject to various cyberattacks by determined and well-funded adversaries. Many well-publicized real-world cyberattacks on power grid systems have been publicly reported. Phasor Measurement Units (PMUs) networks with Phasor Data Concentrators (PDCs) are the main building blocks of the overall wide area monitoring and situational awareness systems in the power grid. The data between PMUs and PDC(s) are sent through the legacy networks, which are subject to many attack scenarios under with no, or inadequate, countermeasures in protocols, such as IEEE 37.118-2. In this paper, we consider a stealthier data spoofing attack against PMU networks, called a mirroring attack, where an adversary basically injects a copy of a set of packets in reverse order immediately following their original positions, wiping out the correct values. To the best of our knowledge, for the first time in the literature, we consider a more challenging attack both in terms of the strategy and the lower percentage of spoofed attacks. As part of our countermeasure detection scheme, we make use of novel framing approach to make application of a 2D Convolutional Neural Network (CNN)-based approach which avoids the computational overhead of the classical sample-based classification algorithms. Our experimental evaluation results show promising results in terms of both high accuracy and true positive rates even under the aforementioned stealthy adversarial attack scenarios.
Khan, Rashid, Saxena, Neetesh, Rana, Omer, Gope, Prosanta.  2022.  ATVSA: Vehicle Driver Profiling for Situational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :348–357.

Increasing connectivity and automation in vehicles leads to a greater potential attack surface. Such vulnerabilities within vehicles can also be used for auto-theft, increasing the potential for attackers to disable anti-theft mechanisms implemented by vehicle manufacturers. We utilize patterns derived from Controller Area Network (CAN) bus traffic to verify driver “behavior”, as a basis to prevent vehicle theft. Our proposed model uses semi-supervised learning that continuously profiles a driver, using features extracted from CAN bus traffic. We have selected 15 key features and obtained an accuracy of 99% using a dataset comprising a total of 51 features across 10 different drivers. We use a number of data analysis algorithms, such as J48, Random Forest, JRip and clustering, using 94K records. Our results show that J48 is the best performing algorithm in terms of training and testing (1.95 seconds and 0.44 seconds recorded, respectively). We also analyze the effect of using a sliding window on algorithm performance, altering the size of the window to identify the impact on prediction accuracy.

2023-01-13
Kopecky, Sandra, Dwyer, Catherine.  2022.  Nature-inspired Metaheuristic Effectiveness Used in Phishing Intrusion Detection Systems with Firefly Algorithm Techniques. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
This paper discusses research-based findings of applying metaheuristic optimization techniques and nature-inspired algorithms to detect and mitigate phishing attacks. The focus will be on the Firefly nature-inspired metaheuristic algorithm optimized with Random Forest and Support Vector Machine (SVM) classification. Existing research recommends the development and use of nature-inspired detection techniques to solve complex real-world problems. Existing research using nature-inspired heuristics appears to be promising in solving NP-hard problems such as the traveling salesperson problem. In the same classification of NP-hard, is that of cyber security existing research indicates that the security threats are complex, and that providing security is an NP-hard problem. This study is expanding the existing research with a hybrid optimization of nature-inspired metaheuristic with existing classifiers (random forest and SVM) for an improvement in results to include increased true positives and decreased false positives. The proposed study will present the importance of nature and natural processes in developing algorithms and systems with high precision and accuracy.
2023-01-05
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Tuba, Eva, Alihodzic, Adis, Tuba, Una, Capor Hrosik, Romana, Tuba, Milan.  2022.  Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Sravani, T., Suguna, M.Raja.  2022.  Comparative Analysis Of Crime Hotspot Detection And Prediction Using Convolutional Neural Network Over Support Vector Machine with Engineered Spatial Features Towards Increase in Classifier Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
The major aim of the study is to predict the type of crime that is going to happen based on the crime hotspot detected for the given crime data with engineered spatial features. crime dataset is filtered to have the following 2 crime categories: crime against society, crime against person. Crime hotspots are detected by using the Novel Hierarchical density based Spatial Clustering of Application with Noise (HDBSCAN) Algorithm with the number of clusters optimized using silhouette score. The sample data consists of 501 crime incidents. Future types of crime for the given location are predicted by using the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms (N=5). The accuracy of crime prediction using Support Vector Machine classification algorithm is 94.01% and Convolutional Neural Network algorithm is 79.98% with the significance p-value of 0.033. The Support Vector Machine algorithm is significantly better in accuracy for prediction of type of crime than Convolutional Neural Network (CNN).