Visible to the public Biblio

Found 182 results

Filters: Keyword is Classification algorithms  [Clear All Filters]
2023-01-05
Kumar, Marri Ranjith, K.Malathi, Prof..  2022.  An Innovative Method in Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing Decision Tree with Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing machine learning methods such as Innovative Decision Tree (DT) with Support Vector Machine (SVM). By comparing the Decision Tree (N=20) and the Support Vector Machine algorithm (N=20) two classes of machine learning classifiers were used to determine the accuracy. The decision Tree (99.19%) has the highest accuracy than the SVM (98.5615%) and the independent T-test was carried out (=.507) and shows that it is statistically insignificant (p\textgreater0.05) with a confidence value of 95%. by comparing Innovative Decision Tree and Support Vector Machine. The Decision Tree is more productive than the Support Vector Machine for recognizing intruders with substantially checked, according to the significant analysis.
2022-10-20
Abdali, Natiq M., Hussain, Zahir M..  2020.  Reference-free Detection of LSB Steganography Using Histogram Analysis. 2020 30th International Telecommunication Networks and Applications Conference (ITNAC). :1—7.
Due to the difficulty of obtaining a database of original images that are required in the classification process to detect tampering, this paper presents a technique for detecting image tampering such as image steganography in the spatial domain. The system depends on deriving the auto-correlation function of the image histogram, then applying a high-pass filter with a threshold. This technique can be used to decide which image is cover or a stego image, without adopting the original image. The results have eventually revealed the validity of this system. Although this study has focused on least-significant-bit (LSB) steganography, we expect that it could be extended to other types of image tapering.
2022-09-30
Baptiste, Millot, Julien, Francq, Franck, Sicard.  2021.  Systematic and Efficient Anomaly Detection Framework using Machine Learning on Public ICS Datasets. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :292–297.
Industrial Control Systems (ICSs) are used in several domains such as Transportation, Manufacturing, Defense and Power Generation and Distribution. ICSs deal with complex physical systems in order to achieve an industrial purpose with operational safety. Security has not been taken into account by design in these systems that makes them vulnerable to cyberattacks.In this paper, we rely on existing public ICS datasets as well as on the existing literature of Machine Learning (ML) applications for anomaly detection in ICSs in order to improve detection scores. To perform this purpose, we propose a systematic framework, relying on established ML algorithms and suitable data preprocessing methods, which allows us to quickly get efficient, and surprisingly, better results than the literature. Finally, some recommendations for future public ICS dataset generations end this paper, which would be fruitful for improving future attack detection models and then protect new ICSs designed in the next future.
2022-09-09
Lin, Yier, Tian, Yin.  2021.  The Short-Time Fourier Transform based WiFi Human Activity Classification Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :30—34.
The accurate classification of WiFi-based activity patterns is still an open problem and is critical to detect behavior for non-visualization applications. This paper proposes a novel approach that uses WiFi-based IQ data and short-time Fourier transform (STFT) time-frequency images to automatically and accurately classify human activities. The offsets features, calculated from time-domain values and one-dimensional principal component analysis (1D-PCA) values and two-dimensional principal component analysis (2D-PCA) values, are applied as features to input the classifiers. The machine learning methods such as the bagging, boosting, support vector machine (SVM), random forests (RF) as the classifier to output the performance. The experimental data validate our proposed method with 15000 experimental samples from five categories of WiFi signals (empty, marching on the spot, rope skipping, both arms rotating;singlearm rotating). The results show that the method companying with the RF classifier surpasses the approach with alternative classifiers on classification performance and finally obtains a 62.66% classification rate, 85.06% mean accuracy, and 90.67% mean specificity.
2022-07-15
Hua, Yi, Li, Zhangbing, Sheng, Hankang, Wang, Baichuan.  2021.  A Method for Finding Quasi-identifier of Single Structured Relational Data. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :93—98.
Quasi-identifier is an attribute combined with other attributes to identify specific tuples or partial tuples. Improper selection of quasi-identifiers will lead to the failure of current privacy protection anonymization technology. Therefore, in this paper, we propose a method to solve single structured relational data quasi-identifiers based on functional dependency and determines the attribute classification standard. Firstly, the solution scope of quasi-identifier is determined to be all attributes except identity attributes and critical attributes. Secondly, the real data set is used to evaluate the dependency relationship between the indefinite attribute subset and the identity attribute to solve the quasi-identifiers set. Finally, we propose an algorithm to find all quasi-identifiers and experiment on real data sets of different sizes. The results show that our method can achieve better performance on the same dataset.
2022-07-14
Ayub, Md. Ahsan, Sirai, Ambareen.  2021.  Similarity Analysis of Ransomware based on Portable Executable (PE) File Metadata. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–6.
Threats, posed by ransomware, are rapidly increasing, and its cost on both national and global scales is becoming significantly high as evidenced by the recent events. Ransomware carries out an irreversible process, where it encrypts victims' digital assets to seek financial compensations. Adversaries utilize different means to gain initial access to the target machines, such as phishing emails, vulnerable public-facing software, Remote Desktop Protocol (RDP), brute-force attacks, and stolen accounts. To combat these threats of ransomware, this paper aims to help researchers gain a better understanding of ransomware application profiles through static analysis, where we identify a list of suspicious indicators and similarities among 727 active ran-somware samples. We start with generating portable executable (PE) metadata for all the studied samples. With our domain knowledge and exploratory data analysis tasks, we introduce some of the suspicious indicators of the structure of ransomware files. We reduce the dimensionality of the generated dataset by using the Principal Component Analysis (PCA) technique and discover clusters by applying the KMeans algorithm. This motivates us to utilize the one-class classification algorithms on the generated dataset. As a result, the algorithms learn the common data boundary in the structure of our studied ransomware samples, and thereby, we achieve the data-driven similarities. We use the findings to evaluate the trained classifiers with the test samples and observe that the Local Outlier Factor (LoF) performs better on all the selected feature spaces compared to the One-Class SVM and the Isolation Forest algorithms.
Almousa, May, Osawere, Janet, Anwar, Mohd.  2021.  Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques. 2021 Third International Conference on Transdisciplinary AI (TransAI). :19–24.
The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.
2022-07-13
Wang, Yuanfa, Pang, Yu, Huang, Huan, Zhou, Qianneng, Luo, Jiasai.  2021.  Hardware Design of Gaussian Kernel Function for Non-Linear SVM Classification. 2021 IEEE 14th International Conference on ASIC (ASICON). :1—4.
High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.
2022-07-12
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
2022-07-01
Hashim, Aya, Medani, Razan, Attia, Tahani Abdalla.  2021.  Defences Against web Application Attacks and Detecting Phishing Links Using Machine Learning. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). :1–6.
In recent years web applications that are hacked every day estimated to be 30 000, and in most cases, web developers or website owners do not even have enough knowledge about what is happening on their sites. Web hackers can use many attacks to gain entry or compromise legitimate web applications, they can also deceive people by using phishing sites to collect their sensitive and private information. In response to this, the need is raised to take proper measures to understand the risks and be aware of the vulnerabilities that may affect the website and hence the normal business flow. In the scope of this study, mitigations against the most common web application attacks are set, and the web administrator is provided with ways to detect phishing links which is a social engineering attack, the study also demonstrates the generation of web application logs that simplifies the process of analyzing the actions of abnormal users to show when behavior is out of bounds, out of scope, or against the rules. The methods of mitigation are accomplished by secure coding techniques and the methods for phishing link detection are performed by various machine learning algorithms and deep learning techniques. The developed application has been tested and evaluated against various attack scenarios, the outcomes obtained from the test process showed that the website had successfully mitigated these dangerous web application attacks, and for the detection of phishing links part, a comparison is made between different algorithms to find the best one, and the outcome of the best model gave 98% accuracy.
2022-06-14
Hancock, John, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2021.  Detecting SSH and FTP Brute Force Attacks in Big Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :760–765.
We present a simple approach for detecting brute force attacks in the CSE-CIC-IDS2018 Big Data dataset. We show our approach is preferable to more complex approaches since it is simpler, and yields stronger classification performance. Our contribution is to show that it is possible to train and test simple Decision Tree models with two independent variables to classify CSE-CIC-IDS2018 data with better results than reported in previous research, where more complex Deep Learning models are employed. Moreover, we show that Decision Tree models trained on data with two independent variables perform similarly to Decision Tree models trained on a larger number independent variables. Our experiments reveal that simple models, with AUC and AUPRC scores greater than 0.99, are capable of detecting brute force attacks in CSE-CIC-IDS2018. To the best of our knowledge, these are the strongest performance metrics published for the machine learning task of detecting these types of attacks. Furthermore, the simplicity of our approach, combined with its strong performance, makes it an appealing technique.
2022-06-09
Zhang, QianQian, Liu, Yazhou, Sun, Quansen.  2021.  Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing. 2020 25th International Conference on Pattern Recognition (ICPR). :9507–9513.
Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications.
2022-05-20
Kjamilji, Artrim, Levi, Albert, Savas, Erkay, Güney, Osman Berke.  2021.  Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We tackle the problem where a server owns a trained Machine Learning (ML) model and a client/user has an unclassified query that he wishes to classify in secure and private fashion using the server’s model. During the process the server learns nothing, while the user learns only his final classification and nothing else. Since several ML classification algorithms, such as deep neural networks, support vector machines-SVM (and hyperplane decisions in general), Logistic Regression, Naïve Bayes, etc., can be expressed in terms of matrix operations, initially we propose novel secure matrix operations as our building blocks. On top of them we build our secure and private ML classification algorithms under strict security and privacy requirements. As our underlying cryptographic primitives are shown to be resilient to quantum computer attacks, our algorithms are also suitable for the post-quantum world. Our theoretical analysis and extensive experimental evaluations show that our secure matrix operations, hence our secure ML algorithms build on top of them as well, outperform the state of the art schemes in terms of computation and communication costs. This makes our algorithms suitable for devices with limited resources that are often found in Industrial IoT (Internet of Things)
2022-05-19
Baniya, Babu Kaji.  2021.  Intrusion Representation and Classification using Learning Algorithm. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :279–284.
At present, machine learning (ML) algorithms are essential components in designing the sophisticated intrusion detection system (IDS). They are building-blocks to enhance cyber threat detection and help in classification at host-level and network-level in a short period. The increasing global connectivity and advancements of network technologies have added unprecedented challenges and opportunities to network security. Malicious attacks impose a huge security threat and warrant scalable solutions to thwart large-scale attacks. These activities encourage researchers to address these imminent threats by analyzing a large volume of the dataset to tackle all possible ranges of attack. In this proposed method, we calculated the fitness value of each feature from the population by using a genetic algorithm (GA) and selected them according to the fitness value. The fitness values are presented in hierarchical order to show the effectiveness of problem decomposition. We implemented Support Vector Machine (SVM) to verify the consistency of the system outcome. The well-known NSL-knowledge discovery in databases (KDD) was used to measure the performance of the system. From the experiments, we achieved a notable classification accuracies using a SVM of the current state of the art intrusion detection.
2022-05-12
Rokade, Monika D., Sharma, Yogesh Kumar.  2021.  MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :533–536.
Computer network and virtual machine security is very essential in today's era. Various architectures have been proposed for network security or prevent malicious access of internal or external users. Various existing systems have already developed to detect malicious activity on victim machines; sometimes any external user creates some malicious behavior and gets unauthorized access of victim machines to such a behavior system considered as malicious activities or Intruder. Numerous machine learning and soft computing techniques design to detect the activities in real-time network log audit data. KKDDCUP99 and NLSKDD most utilized data set to detect the Intruder on benchmark data set. In this paper, we proposed the identification of intruders using machine learning algorithms. Two different techniques have been proposed like a signature with detection and anomaly-based detection. In the experimental analysis, demonstrates SVM, Naïve Bayes and ANN algorithm with various data sets and demonstrate system performance on the real-time network environment.
2022-05-03
Wang, Tingting, Zhao, Xufeng, Lv, Qiujian, Hu, Bo, Sun, Degang.  2021.  Density Weighted Diversity Based Query Strategy for Active Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :156—161.

Deep learning has made remarkable achievements in various domains. Active learning, which aims to reduce the budget for training a machine-learning model, is especially useful for the Deep learning tasks with the demand of a large number of labeled samples. Unfortunately, our empirical study finds that many of the active learning heuristics are not effective when applied to Deep learning models in batch settings. To tackle these limitations, we propose a density weighted diversity based query strategy (DWDS), which makes use of the geometry of the samples. Within a limited labeling budget, DWDS enhances model performance by querying labels for the new training samples with the maximum informativeness and representativeness. Furthermore, we propose a beam-search based method to obtain a good approximation to the optimum of such samples. Our experiments show that DWDS outperforms existing algorithms in Deep learning tasks.

2022-04-19
Perumal, Seethalakshmi, Sujatha P, Kola.  2021.  Stacking Ensemble-based XSS Attack Detection Strategy Using Classification Algorithms. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :897–901.

The accessibility of the internet and mobile platforms has risen dramatically due to digital technology innovations. Web applications have opened up a variety of market possibilities by supplying consumers with a wide variety of digital technologies that benefit from high accessibility and functionality. Around the same time, web application protection continues to be an important challenge on the internet, and security must be taken seriously in order to secure confidential data. The threat is caused by inadequate validation of user input information, software developed without strict adherence to safety standards, vulnerability of reusable software libraries, software weakness, and so on. Through abusing a website's vulnerability, introduers are manipulating the user's information in order to exploit it for their own benefit. Then introduers inject their own malicious code, stealing passwords, manipulating user activities, and infringing on customers' privacy. As a result, information is leaked, applications malfunction, confidential data is accessed, etc. To mitigate the aforementioned issues, stacking ensemble based classifier model for Cross-site scripting (XSS) attack detection is proposed. Furthermore, the stacking ensembles technique is used in combination with different machine learning classification algorithms like k-Means, Random Forest and Decision Tree as base-learners to reliably detect XSS attack. Logistic Regression is used as meta-learner to predict the attack with greater accuracy. The classification algorithms in stacking model explore the problem in their own way and its results are given as input to the meta-learner to make final prediction, thus improving the overall detection accuracy of XSS attack in stacking than the individual models. The simulation findings demonstrate that the proposed model detects XSS attack successfully.

2022-04-13
Nurwarsito, Heru, Nadhif, Muhammad Fahmy.  2021.  DDoS Attack Early Detection and Mitigation System on SDN using Random Forest Algorithm and Ryu Framework. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :178—183.

Distributed Denial of Service (DDoS) attacks became a true threat to network infrastructure. DDoS attacks are capable of inflicting major disruption to the information communication technology infrastructure. DDoS attacks aim to paralyze networks by overloading servers, network links, and network devices with illegitimate traffic. Therefore, it is important to detect and mitigate DDoS attacks to reduce the impact of DDoS attacks. In traditional networks, the hardware and software to detect and mitigate DDoS attacks are expensive and difficult to deploy. Software-Defined Network (SDN) is a new paradigm in network architecture by separating the control plane and data plane, thereby increasing scalability, flexibility, control, and network management. Therefore, SDN can dynamically change DDoS traffic forwarding rules and improve network security. In this study, a DDoS attack detection and mitigation system was built on the SDN architecture using the random forest machine-learning algorithm. The random forest algorithm will classify normal and attack packets based on flow entries. If packets are classified as a DDoS attack, it will be mitigated by adding flow rules to the switch. Based on tests that have been done, the detection system can detect DDoS attacks with an average accuracy of 98.38% and an average detection time of 36 ms. Then the mitigation system can mitigate DDoS attacks with an average mitigation time of 1179 ms and can reduce the average number of attack packets that enter the victim host by 15672 packets and can reduce the average number of CPU usage on the controller by 44,9%.

2022-04-12
Kalai Chelvi, T., Ramapraba, P. S., Sathya Priya, M., Vimala, S., Shobarani, R., Jeshwanth, N L, Babisha, A..  2021.  A Web Application for Prevention of Inference Attacks using Crowd Sourcing in Social Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :328—332.
Many people are becoming more reliant on internet social media sites like Facebook. Users can utilize these networks to reveal articles to them and engage with your peers. Several of the data transmitted from these connections is intended to be confidential. However, utilizing publicly available data and learning algorithms, it is feasible to forecast concealed informative data. The proposed research work investigates the different ways to initiate deduction attempts on freely released photo sharing data in order to envisage concealed informative data. Next, this research study offers three distinct sanitization procedures that could be used in a range of scenarios. Moreover, the effectualness of all these strategies and endeavor to utilize collective teaching and research to reveal important bits of the data set are analyzed. It shows how, by using the sanitization methods presented here, a user may lower the accuracy by including both global and interpersonal categorization techniques.
K M, Akshobhya.  2021.  Machine learning for anonymous traffic detection and classification. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :942—947.
Anonymity is one of the biggest concerns in web security and traffic management. Though web users are concerned about privacy and security various methods are being adopted in making the web more vulnerable. Browsing the web anonymously not only threatens the integrity but also questions the motive of such activity. It is important to classify the network traffic and prevent source and destination from hiding with each other unless it is for benign activity. The paper proposes various methods to classify the dark web at different levels or hierarchies. Various preprocessing techniques are proposed for feature selection and dimensionality reduction. Anon17 dataset is used for training and testing the model. Three levels of classification are proposed in the paper based on the network, traffic type, and application.
2022-03-25
Das, Indrajit, Singh, Shalini, Sarkar, Ayantika.  2021.  Serial and Parallel based Intrusion Detection System using Machine Learning. 2021 Devices for Integrated Circuit (DevIC). :340—344.

Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.

Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

Alibrahim, Hussain, Ludwig, Simone A..  2021.  Investigation of Domain Name System Attack Clustering using Semi-Supervised Learning with Swarm Intelligence Algorithms. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :01—09.

Domain Name System (DNS) is the Internet's system for converting alphabetic names into numeric IP addresses. It is one of the early and vulnerable network protocols, which has several security loopholes that have been exploited repeatedly over the years. The clustering task for the automatic recognition of these attacks uses machine learning approaches based on semi-supervised learning. A family of bio-inspired algorithms, well known as Swarm Intelligence (SI) methods, have recently emerged to meet the requirements for the clustering task and have been successfully applied to various real-world clustering problems. In this paper, Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Kmeans, which is one of the most popular cluster algorithms, have been applied. Furthermore, hybrid algorithms consisting of Kmeans and PSO, and Kmeans and ABC have been proposed for the clustering process. The Canadian Institute for Cybersecurity (CIC) data set has been used for this investigation. In addition, different measures of clustering performance have been used to compare the different algorithms.

2022-03-23
Xing, Ningzhe, Wu, Peng, Jin, Shen, Yao, Jiming, Xu, Zhichen.  2021.  Task Classification Unloading Algorithm For Mobile Edge Computing in Smart Grid. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1636—1640.
With the rapid development of smart grid, the data generated by grid services are growing rapidly, and the requirements for time delay are becoming more and more stringent. The storage and computing capacity of the existing terminal equipment can not meet the needs of high bandwidth and low delay of the system at the same time. Fortunately, mobile edge computing (MEC) can provide users with nearby storage and computing services at the network edge, this can give an option to simultaneously meet the requirement of high bandwidth and low delay. Aiming at the problem of service offload scheduling in edge computing, this paper proposes a delay optimized task offload algorithm based on task priority classification. Firstly, the priority of power grid services is divided by using analytic hierarchy process (AHP), and the processing efficiency and quality of service of emergency tasks are guaranteed by giving higher weight coefficients to delay constraints and security levels. Secondly, the service is initialized and unloaded according to the task preprocessing time. Finally, the reasonable subchannel allocation is carried out based on the task priority design decision method. Simulation results show that compared with the traditional approaches, our algorithm can effectively improve the overall system revenue and reduce the average user task delay.
Liu, Jingyu, Yang, Dongsheng, Lian, Mengjia, Li, Mingshi.  2021.  Research on Classification of Intrusion Detection in Internet of Things Network Layer Based on Machine Learning. 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR). :106–110.
The emergence of the Internet of Things (IoT) is not only a global revolution in the information industry, but also brought tremendous changes to our lives. With the development of the technology and means of the IoT, information security issues have gradually emerged, and intrusion attacks have become one of the main problems of the IoT network security. The network layer of the IoT is the key connecting the platform and sensors or controllers of the IoT, and it is also the most standardized, the strongest and the most mature part of the whole physical network architecture. Its large-scale development has led to the network layer's security issues will receive more attention and face more challenges. This paper proposes an intrusion detection algorithm deployed on the network layer of the IoT, which uses the BPSO algorithm to extract features from the NSL-KDD dataset, and applies support vector machines (SVM) as the core model of the algorithm to detect and identify abnormal data, especially DoS attacks. Experimental results show that the model's detection rate of abnormal data and DoS attacks are significantly improved.