Visible to the public Biblio

Filters: Keyword is BIGDATA  [Clear All Filters]
2023-01-13
Lavanya, P., Subbareddy, I.V., Selvakumar, V..  2022.  Internet of Things enabled Block Level Security Mechanism to Big Data Environment using Cipher Security Policies. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
The proliferation of linked devices in decisive infrastructure fields including health care and the electric grid is transforming public perceptions of critical infrastructure. As the world grows more mobile and connected, as well as as the Internet of Things (IoT) expands, the growing interconnectivity of new critical sectors is being fuelled. Interruptions in any of these areas can have ramifications across numerous sectors and potentially the world. Crucial industries are critical to contemporary civilization. In today's hyper-connected world, critical infrastructure is more vulnerable than ever to cyber assaults, whether they are state-sponsored, carried out by criminal organizations, or carried out by individuals. In a world where more and more gadgets are interconnected, hackers have more and more entry points via which they may damage critical infrastructure. Significant modifications to an organization's main technological systems have created a new threat surface. The study's goal is to raise awareness about the challenges of protecting digital infrastructure in the future while it is still in development. Fog architecture is designed based on functionality once the infrastructure that creates large data has been established. There's also an in-depth look of fog-enabled IoT network security requirements. The next section examines the security issues connected with fog computing, as well as the privacy and trust issues raised by fog-enabled Internet of Things (IoT). Block chain is also examined to see how it may help address IoT security problems, as well as the complimentary interrelationships between block-chain and fog computing. Additionally, Formalizes big data security goal and scope, develops taxonomy for identifying risks to fog-based Internet of Things systems, compares current development contributions to security service standards, and proposes interesting study areas for future studies, all within this framework
2022-08-12
Telghamti, Samira, Derdouri, Lakhdhar.  2021.  Towards a Trust-based Model for Access Control for Graph-Oriented Databases. 2021 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS). :1—3.
Privacy and data security are critical aspects in databases, mainly when the latter are publically accessed such in social networks. Furthermore, for advanced databases, such as NoSQL ones, security models and security meta-data must be integrated to the business specification and data. In the literature, the proposed models for NoSQL databases can be considered as static, in the sense where the privileges for a given user are predefined and remain unchanged during job sessions. In this paper, we propose a novel model for NoSQL database access control that we aim that it will be dynamic. To be able to design such model, we have considered the Trust concept to compute the reputation degree for a given user that plays a given role.
2021-08-17
Jaiswal, Ayshwarya, Dwivedi, Vijay Kumar, Yadav, Om Prakash.  2020.  Big Data and its Analyzing Tools : A Perspective. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :560–565.
Data are generated and stored in databases at a very high speed and hence it need to be handled and analyzed properly. Nowadays industries are extensively using Hadoop and Spark to analyze the datasets. Both the frameworks are used for increasing processing speeds in computing huge complex datasets. Many researchers are comparing both of them. Now, the big questions arising are, Is Spark a substitute for Hadoop? Is hadoop going to be replaced by spark in mere future?. Spark is “built on top of” Hadoop and it extends the model to deploy more types of computations which incorporates Stream Processing and Interactive Queries. No doubt, Spark's execution speed is much faster than Hadoop, but talking in terms of fault tolerance, hadoop is slightly more fault tolerant than spark. In this article comparison of various bigdata analytics tools are done and Hadoop and Spark are discussed in detail. This article further gives an overview of bigdata, spark and hadoop issues. In this survey paper, the approaches to resolve the issues of spark and hadoop are discussed elaborately.
2020-12-28
Meng, C., Zhou, L..  2020.  Big Data Encryption Technology Based on ASCII And Application On Credit Supervision. 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :79—82.

Big Data Platform provides business units with data platforms, data products and data services by integrating all data to fully analyze and exploit the intrinsic value of data. Data accessed by big data platforms may include many users' privacy and sensitive information, such as the user's hotel stay history, user payment information, etc., which is at risk of leakage. This paper first analyzes the risks of data leakage, then introduces in detail the theoretical basis and common methods of data desensitization technology, and finally puts forward a set of effective market subject credit supervision application based on asccii, which is committed to solving the problems of insufficient breadth and depth of data utilization for enterprises involved, the problems of lagging regulatory laws and standards, the problems of separating credit construction and market supervision business, and the credit constraints of data governance.

2020-12-01
Chen, S., Hu, W., Li, Z..  2019.  High Performance Data Encryption with AES Implementation on FPGA. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :149—153.

Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.