Biblio
Over the past decade, the reliance on Unmanned Aerial Systems (UAS) to carry out critical missions has grown drastically. With an increased reliance on UAS as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the traditional safety oriented principles as well as the cyber security principles and techniques. It is with the effective and timely convergence of these domains that a holistic approach and co-design can meet the unique requirements of modern systems and operations. In this paper, authors from both the cyber security and avionics domains describe our joint effort and insights obtained during the course of designing secure and resilient embedded avionics systems.
In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.
Traditionally, the focus of security and ensuring confidentiality, integrity, and availability of data in spacecraft systems has been on the ground segment and the uplink/downlink components. Although these are the most obvious attack vectors, potential security risks against the satellite's platform is also a serious concern. This paper discusses a notional satellite architecture and explores security vulnerabilities using a systems-level approach. Viewing attacks through this paradigm highlights several potential attack vectors that conventional satellite security approaches fail to consider. If left undetected, these could yield physical effects limiting the satellite's mission or performance. The approach presented aids in risk analysis and gives insight into architectural design considerations which improve the system's overall resiliency.
Recent attention to aviation cyber physical systems (ACPS) is driven by the need for seamless integration of design disciplines that dominate physical world and cyber world convergence. System convergence is a big obstacle to good aviation cyber-physical system (ACPS) design, which is due to a lack of an adequate scientific theoretical foundation for the subject. The absence of a good understanding of the science of aviation system convergence is not due to neglect, but rather due to its difficulty. Most complex aviation system builders have abandoned any science or engineering discipline for system convergence they simply treat it as a management problem. Aviation System convergence is almost totally absent from software engineering and engineering curricula. Hence, system convergence is particularly challenging in ACPS where fundamentally different physical and computational design concerns intersect. In this paper, we propose an integrated approach to handle System convergence of aviation cyber physical systems based on multi-dimensions, multi-views, multi-paradigm and multiple tools. This model-integrated development approach addresses the development needs of cyber physical systems through the pervasive use of models, and physical world, cyber world can be specified and modeled together, cyber world and physical world can be converged entirely, and cyber world models and physical world model can be integrated seamlessly. The effectiveness of the approach is illustrated by means of one practical case study: specifying and modeling Aircraft Systems. In this paper, We specify and model Aviation Cyber-Physical Systems with integrating Modelica, Modelicaml and Architecture Analysis & Design Language (AADL), the physical world is modeled by Modelica and Modelicaml, the cyber part is modeled by AADL and Modelicaml.
This paper discusses strategies for I/O sharing in Multiple Independent Levels of Security (MILS) systems mostly deployed in the special environment of avionic systems. MILS system designs are promising approaches for handling the increasing complexity of functionally integrated systems, where multiple applications run concurrently on the same hardware platform. Such integrated systems, also known as Integrated Modular Avionics (IMA) in the aviation industry, require communication to remote systems located outside of the hosting hardware platform. One possible solution is to provide each partition, the isolated runtime environment of an application, a direct interface to the communication's hardware controller. Nevertheless, this approach requires a special design of the hardware itself. This paper discusses efficient system architectures for I/O sharing in the environment of high-criticality embedded systems and the exemplary analysis of Free scale's proprietary Data Path Acceleration Architecture (DPAA) with respect to generic hardware requirements. Based on this analysis we also discuss the development of possible architectures matching with the MILS approach. Even though the analysis focuses on avionics it is equally applicable to automotive architectures such as Auto SAR.