Visible to the public Biblio

Filters: Keyword is Hafnium compounds  [Clear All Filters]
2022-02-04
Kruv, A., McMitchell, S. R. C., Clima, S., Okudur, O. O., Ronchi, N., Van den bosch, G., Gonzalez, M., De Wolf, I., Houdt, J.Van.  2021.  Impact of mechanical strain on wakeup of HfO2 ferroelectric memory. 2021 IEEE International Reliability Physics Symposium (IRPS). :1–6.
This work investigates the impact of mechanical strain on wake-up behavior of planar HfO2 ferroelectric capacitor-based memory. External in-plane strain was applied using a four-point bending tool and strain impact on remanent polarization and coercive voltage of the ferroelectric was monitored. It was established that compressive strain is beneficial for 2Pr improvement, while tensile strain leads to its degradation, with a sensitivity of -8.4 ± 0.5 % per 0.1 % of strain. Strain-induced polarization rotation is considered to be the most likely mechanism affecting 2Pr At the same time, no strain impact on Vcwas observed in the investigated strain range. The results seen here can be utilized to undertake stress engineering of ferroelectric memory in order to improve its performance.
2021-04-27
Chen, Q., Chen, D., Gong, J..  2020.  Weighted Predictive Coding Methods for Block-Based Compressive Sensing of Images. 2020 3rd International Conference on Unmanned Systems (ICUS). :587–591.
Compressive sensing (CS) is beneficial for unmanned reconnaissance systems to obtain high-quality images with limited resources. The existing prediction methods for block-based compressive sensing of images can be regarded as the particular coefficients of weighted predictive coding. To find better prediction coefficients for BCS, this paper proposes two weighted prediction methods. The first method converts the prediction model of measurements into a prediction model of image blocks. The prediction weights are obtained by training the prediction model of image blocks offline, which avoiding the influence of the sampling rates on the prediction model of measurements. Another method is to calculate the prediction coefficients adaptively based on the average energy of measurements, which can adjust the weights based on the measurements. Compared with existing methods, the proposed prediction methods for BCS of images can further improve the reconstruction image quality.
2021-04-09
Peng, X., Hongmei, Z., Lijie, C., Ying, H..  2020.  Analysis of Computer Network Information Security under the Background of Big Data. 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA). :409—412.
In today's society, under the comprehensive arrival of the Internet era, the rapid development of technology has facilitated people's production and life, but it is also a “double-edged sword”, making people's personal information and other data subject to a greater threat of abuse. The unique features of big data technology, such as massive storage, parallel computing and efficient query, have created a breakthrough opportunity for the key technologies of large-scale network security situational awareness. On the basis of big data acquisition, preprocessing, distributed computing and mining and analysis, the big data analysis platform provides information security assurance services to the information system. This paper will discuss the security situational awareness in large-scale network environment and the promotion of big data technology in security perception.
2021-02-16
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
2020-11-30
Wang, Y., Huang, F., Hu, Y., Cao, R., Shi, T., Liu, Q., Bi, L., Liu, M..  2018.  Proton Radiation Effects on Y-Doped HfO2-Based Ferroelectric Memory. IEEE Electron Device Letters. 39:823–826.
In this letter, ferroelectric memory performance of TiN/Y-doped-HfO2 (HYO)/TiN capacitors is investigated under proton radiation with 3-MeV energy and different fluence (5e13, 1e14, 5e14, and 1e15 ions/cm2). X-ray diffraction patterns confirm that the orthorhombic phase Pbc21 of HYOfilm has no obvious change after proton radiation. Electrical characterization results demonstrate slight variations of the permittivity and ferroelectric hysteresis loop after proton radiation. The remanent polarization (2Pr) of the capacitor decreases with increasing proton fluence. But the decreasing trend of 2Pr is suppressed under high electric fields. Furthermore, the 2Pr degradation with cycling is abated by proton radiation. These results show that the HYO-based ferroelectric memory is highly resistive to proton radiation, which is potentially useful for space applications.
2018-04-02
Gao, F..  2017.  Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection. 2017 International Conference on Robots Intelligent System (ICRIS). :54–57.

By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.