Visible to the public Biblio

Filters: Keyword is network intrusion  [Clear All Filters]
2023-08-16
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
2023-01-05
Kumar, Marri Ranjith, K.Malathi, Prof..  2022.  An Innovative Method in Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing Decision Tree with Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing machine learning methods such as Innovative Decision Tree (DT) with Support Vector Machine (SVM). By comparing the Decision Tree (N=20) and the Support Vector Machine algorithm (N=20) two classes of machine learning classifiers were used to determine the accuracy. The decision Tree (99.19%) has the highest accuracy than the SVM (98.5615%) and the independent T-test was carried out (=.507) and shows that it is statistically insignificant (p\textgreater0.05) with a confidence value of 95%. by comparing Innovative Decision Tree and Support Vector Machine. The Decision Tree is more productive than the Support Vector Machine for recognizing intruders with substantially checked, according to the significant analysis.
2022-08-26
Kang, Dong Mug, Yoon, Sang Hun, Shin, Dae Kyo, Yoon, Young, Kim, Hyeon Min, Jang, Soo Hyun.  2021.  A Study on Attack Pattern Generation and Hybrid MR-IDS for In-Vehicle Network. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :291–294.
The CAN (Controller Area Network) bus, which transmits and receives ECU control information in vehicle, has a critical risk of external intrusion because there is no standardized security system. Recently, the need for IDS (Intrusion Detection System) to detect external intrusion of CAN bus is increasing, and high accuracy and real-time processing for intrusion detection are required. In this paper, we propose Hybrid MR (Machine learning and Ruleset) -IDS based on machine learning and ruleset to improve IDS performance. For high accuracy and detection rate, feature engineering was conducted based on the characteristics of the CAN bus, and the generated features were used in detection step. The proposed Hybrid MR-IDS can cope to various attack patterns that have not been learned in previous, as well as the learned attack patterns by using both advantages of rule set and machine learning. In addition, by collecting CAN data from an actual vehicle in driving and stop state, five attack scenarios including physical effects during all driving cycle are generated. Finally, the Hybrid MR-IDS proposed in this paper shows an average of 99% performance based on F1-score.
2022-03-01
ZHU, Guowei, YUAN, Hui, ZHUANG, Yan, GUO, Yue, ZHANG, Xianfei, QIU, Shuang.  2021.  Research on Network Intrusion Detection Method of Power System Based on Random Forest Algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :374–379.
Aiming at the problem of low detection accuracy in traditional power system network intrusion detection methods, in order to improve the performance of power system network intrusion detection, a power system network intrusion detection method based on random forest algorithm is proposed. Firstly, the power system network intrusion sub sample is selected to construct the random forest decision tree. The random forest model is optimized by using the edge function. The accuracy of the vector is judged by the minimum state vector of the power system network, and the measurement residual of the power system network attack is calculated. Finally, the power system network intrusion data set is clustered by Gaussian mixture clustering Through the design of power system network intrusion detection process, the power system network intrusion detection is realized. The experimental results show that the power system network intrusion detection method based on random forest algorithm has high network intrusion detection performance.
Sapre, Suchet, Islam, Khondkar, Ahmadi, Pouyan.  2021.  A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
2020-06-01
Surnin, Oleg, Hussain, Fatima, Hussain, Rasheed, Ostrovskaya, Svetlana, Polovinkin, Andrey, Lee, JooYoung, Fernando, Xavier.  2019.  Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
2020-05-11
Peng, Wang, Kong, Xiangwei, Peng, Guojin, Li, Xiaoya, Wang, Zhongjie.  2019.  Network Intrusion Detection Based on Deep Learning. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :431–435.
With the continuous development of computer network technology, security problems in the network are emerging one after another, and it is becoming more and more difficult to ignore. For the current network administrators, how to successfully prevent malicious network hackers from invading, so that network systems and computers are at Safe and normal operation is an urgent task. This paper proposes a network intrusion detection method based on deep learning. This method uses deep confidence neural network to extract features of network monitoring data, and uses BP neural network as top level classifier to classify intrusion types. The method was validated using the KDD CUP'99 dataset from the Lincoln Laboratory of the Massachusetts Institute of Technology. The results show that the proposed method has a significant improvement over the traditional machine learning accuracy.
Nagamani, Ch., Chittineni, Suneetha.  2018.  Network Intrusion Detection Mechanisms Using Outlier Detection. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1468–1473.
The recognition of intrusions has increased impressive enthusiasm for information mining with the acknowledgment that anomalies can be the key disclosure to be produced using extensive network databases. Intrusions emerge because of different reasons, for example, mechanical deficiencies, changes in framework conduct, fake conduct, human blunder and instrument mistake. Surely, for some applications the revelation of Intrusions prompts more intriguing and helpful outcomes than the disclosure of inliers. Discovery of anomalies can prompt recognizable proof of framework blames with the goal that executives can take preventive measures previously they heighten. A network database framework comprises of a sorted out posting of pages alongside programming to control the network information. This database framework has been intended to empower network operations, oversee accumulations of information, show scientific outcomes and to get to these information utilizing networks. It likewise empowers network clients to gather limitless measure of information on unbounded territories of utilization, break down it and return it into helpful data. Network databases are ordinarily used to help information control utilizing dynamic capacities on sites or for putting away area subordinate data. This database holds a surrogate for each network route. The formation of these surrogates is called ordering and each network database does this errand in an unexpected way. In this paper, a structure for compelling access control and Intrusion Detection using outliers has been proposed and used to give viable Security to network databases. The design of this framework comprises of two noteworthy subsystems to be specific, Access Control Subsystem and Intrusion Detection Subsystem. In this paper preprocessing module is considered which clarifies the preparing of preprocessing the accessible information. And rain forest method is discussed which is used for intrusion detection.
Anand Sukumar, J V, Pranav, I, Neetish, MM, Narayanan, Jayasree.  2018.  Network Intrusion Detection Using Improved Genetic k-means Algorithm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2441–2446.
Internet is a widely used platform nowadays by people across the globe. This has led to the advancement in science and technology. Many surveys show that network intrusion has registered a consistent increase and lead to personal privacy theft and has become a major platform for attack in the recent years. Network intrusion is any unauthorized activity on a computer network. Hence there is a need to develop an effective intrusion detection system. In this paper we acquaint an intrusion detection system that uses improved genetic k-means algorithm(IGKM) to detect the type of intrusion. This paper also shows a comparison between an intrusion detection system that uses the k-means++ algorithm and an intrusion detection system that uses IGKM algorithm while using smaller subset of kdd-99 dataset with thousand instances and the KDD-99 dataset. The experiment shows that the intrusion detection that uses IGKM algorithm is more accurate when compared to k-means++ algorithm.
2020-05-04
Li, Mingxuan, Yang, Zhushi, He, Ling, Teng, Yangxin.  2019.  Research on Typical Model of Network Invasion and Attack in Power Industrial Control System. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:2070–2073.

Aiming at the operation characteristics of power industry control system, this paper deeply analyses the attack mechanism and characteristics of power industry control system intrusion. On the basis of classifying and sorting out the attack characteristics of power industrial control system, this paper also attaches importance to break the basic theory and consequential technologies of industrial control network space security, and constructs the network intrusion as well as attack model of power industrial control system to realize the precise characterization of attackers' attack behavior, which provides a theoretical model for the analysis and early warning of attack behavior analysis of power industrial control systems.

2020-01-21
Zhan, Xin, Yuan, Huabing, Wang, Xiaodong.  2019.  Research on Block Chain Network Intrusion Detection System. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–196.

With the development of computer technology and the popularization of network, network brings great convenience to colleagues and risks to people from all walks of life all over the world. The data in the network world is growing explosively. Various kinds of intrusions are emerging in an endless stream. The means of network intrusion are becoming more and more complex. The intrusions occur at any time and the security threats become more and more serious. Defense alone cannot meet the needs of system security. It is also necessary to monitor the behavior of users in the network at any time and detect new intrusions that may occur at any time. This will not only make people's normal network needs cannot be guaranteed, but also face great network risks. So that people not only rely on defensive means to protect network security, this paper explores block chain network intrusion detection system. Firstly, the characteristics of block chain are briefly introduced, and the challenges of block chain network intrusion security and privacy are proposed. Secondly, the intrusion detection system of WLAN is designed experimentally. Finally, the conclusion analysis of block chain network intrusion detection system is discussed.

2019-03-04
[Anonymous].  2018.  A Systems Approach to Indicators of Compromise Utilizing Graph Theory. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.
It is common to record indicators of compromise (IoC) in order to describe a particular breach and to attempt to attribute a breach to a specific threat actor. However, many network security breaches actually involve multiple diverse modalities using a variety of attack vectors. Measuring and recording IoC's in isolation does not provide an accurate view of the actual incident, and thus does not facilitate attribution. A system's approach that describes the entire intrusion as an IoC would be more effective. Graph theory has been utilized to model complex systems of varying types and this provides a mathematical tool for modeling systems indicators of compromise. This current paper describes the applications of graph theory to creating systems-based indicators of compromise. A complete methodology is presented for developing systems IoC's that fully describe a complex network intrusion.
2018-04-11
Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., Chambers, J. A..  2017.  Support Vector Machine for Network Intrusion and Cyber-Attack Detection. 2017 Sensor Signal Processing for Defence Conference (SSPD). :1–5.

Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.

2018-04-02
Gao, F..  2017.  Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection. 2017 International Conference on Robots Intelligent System (ICRIS). :54–57.

By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.