Visible to the public Biblio

Filters: Keyword is application program interfaces  [Clear All Filters]
2020-10-26
Walker, Aaron, Sengupta, Shamik.  2019.  Insights into Malware Detection via Behavioral Frequency Analysis Using Machine Learning. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
The most common defenses against malware threats involves the use of signatures derived from instances of known malware. However, the constant evolution of the malware threat landscape necessitates defense against unknown malware, making a signature catalog of known threats insufficient to prevent zero-day vulnerabilities from being exploited. Recent research has applied machine learning approaches to identify malware through artifacts of malicious activity as observed through dynamic behavioral analysis. We have seen that these approaches mimic common malware defenses by simply offering a method of detecting known malware. We contribute a new method of identifying software as malicious or benign through analysis of the frequency of Windows API system function calls. We show that this is a powerful technique for malware detection because it generates learning models which understand the difference between malicious and benign software, rather than producing a malware signature classifier. We contribute a method of systematically comparing machine learning models against different datasets to determine their efficacy in accurately distinguishing the difference between malicious and benign software.
Chen, Cheng-Yu, Hsiao, Shun-Wen.  2019.  IoT Malware Dynamic Analysis Profiling System and Family Behavior Analysis. 2019 IEEE International Conference on Big Data (Big Data). :6013–6015.
Not only the number of deployed IoT devices increases but also that of IoT malware increases. We eager to understand the threat made by IoT malware but we lack tools to observe, analyze and detect them. We design and implement an automatic, virtual machine-based profiling system to collect valuable IoT malware behavior, such as API call invocation, system call execution, etc. In addition to conventional profiling methods (e.g., strace and packet capture), the proposed profiling system adapts virtual machine introspection based API hooking technique to intercept API call invocation by malware, so that our introspection would not be detected by IoT malware. We then propose a method to convert the multiple sequential data (API calls) to a family behavior graph for further analysis.
2020-09-04
Zheng, Shengbao, Zhou, Zhenyu, Tang, Heyi, Yang, Xiaowei.  2019.  SwitchMan: An Easy-to-Use Approach to Secure User Input and Output. 2019 IEEE Security and Privacy Workshops (SPW). :105—113.

Modern operating systems for personal computers (including Linux, MAC, and Windows) provide user-level APIs for an application to access the I/O paths of another application. This design facilitates information sharing between applications, enabling applications such as screenshots. However, it also enables user-level malware to log a user's keystrokes or scrape a user's screen output. In this work, we explore a design called SwitchMan to protect a user's I/O paths against user-level malware attacks. SwitchMan assigns each user with two accounts: a regular one for normal operations and a protected one for inputting and outputting sensitive data. Each user account runs under a separate virtual terminal. Malware running under a user's regular account cannot access sensitive input/output under a user's protected account. At the heart of SwitchMan lies a secure protocol that enables automatic account switching when an application requires sensitive input/output from a user. Our performance evaluation shows that SwitchMan adds acceptable performance overhead. Our security and usability analysis suggests that SwitchMan achieves a better tradeoff between security and usability than existing solutions.

2020-08-24
Webb, Josselyn A., Henderson, Michelle W., Webb, Michael L..  2019.  An Open Source Approach to Automating Surveillance and Compliance of Automatic Test Systems. 2019 IEEE AUTOTESTCON. :1–8.
With the disconnected nature of some Automatic Test Systems, there is no possibility for a centralized infrastructure of sense and response in Cybersecurity. For scalability, a cost effective onboard approach will be necessary. In smaller companies where connectivity is not a concern, costly commercial solutions will impede the implementation of surveillance and compliance options. In this paper we propose to demonstrate an open source strategy using freely available Security Technical Implementation Guidelines (STIGs), internet resources, and supporting software stacks, such as OpenScap, HubbleStack, and (ElasticSearch, Logstash, and Kibana (ElasticStack)) to deliver an affordable solution to this problem. OpenScap will provide tools for managing system security and standards compliance. HubbleStack will be employed to automate compliance via its components: NOVA (an auditing engine), Nebula (osquery integration), Pulsar (event system) and Quasar (reporting system). Our intention is utilize NOVA in conjunction with OpenScap to CVE (Common Vulnerabilities and Exposures) scan and netstat for open ports and processes. Additionally we will monitor services and status, firewall settings, and use Nebula's integration of Facebook's osquery to detect vulnerabilities by querying the Operating System. Separately we plan to use Pulsar, a fast file integrity manger, to monitor the integrity of critical files such as system, test, and Hardware Abstraction Layer (HAL) software to ensure the system retains its integrity. All of this will be reported by Quasar, HubbleStack's reporting engine. We will provide situational awareness through the use of the open source Elastic Stack. ElasticSearch is a RESTful search and analytics engine. Logstash is an open source data processing pipeline that enables the ingestion of data from multiple sources sending it through extensible interfaces, in this case ElasticSearch. Kibana supports the visualization of data. Essentially Elastic Stack will be the presentation layer, HubbleStack will be the broker of the data to Elastic Stash, with the other HubbleStack components feeding that data. All of the tools involved are open source in nature, reducing the cost to the overhead required to keep configurations up to date, training on use, and analytics required to review the outputs.
2020-08-17
Chen, Huili, Fu, Cheng, Rouhani, Bita Darvish, Zhao, Jishen, Koushanfar, Farinaz.  2019.  DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks. 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA). :487–498.
Emerging hardware architectures for Deep Neural Networks (DNNs) are being commercialized and considered as the hardware- level Intellectual Property (IP) of the device providers. However, these intelligent devices might be abused and such vulnerability has not been identified. The unregulated usage of intelligent platforms and the lack of hardware-bounded IP protection impair the commercial advantage of the device provider and prohibit reliable technology transfer. Our goal is to design a systematic methodology that provides hardware-level IP protection and usage control for DNN applications on various platforms. To address the IP concern, we present DeepAttest, the first on-device DNN attestation method that certifies the legitimacy of the DNN program mapped to the device. DeepAttest works by designing a device-specific fingerprint which is encoded in the weights of the DNN deployed on the target platform. The embedded fingerprint (FP) is later extracted with the support of the Trusted Execution Environment (TEE). The existence of the pre-defined FP is used as the attestation criterion to determine whether the queried DNN is authenticated. Our attestation framework ensures that only authorized DNN programs yield the matching FP and are allowed for inference on the target device. DeepAttest provisions the device provider with a practical solution to limit the application usage of her manufactured hardware and prevents unauthorized or tampered DNNs from execution. We take an Algorithm/Software/Hardware co-design approach to optimize DeepAttest's overhead in terms of latency and energy consumption. To facilitate the deployment, we provide a high-level API of DeepAttest that can be seamlessly integrated into existing deep learning frameworks and TEEs for hardware-level IP protection and usage control. Extensive experiments corroborate the fidelity, reliability, security, and efficiency of DeepAttest on various DNN benchmarks and TEE-supported platforms.
2020-08-14
Gu, Zuxing, Zhou, Min, Wu, Jiecheng, Jiang, Yu, Liu, Jiaxiang, Gu, Ming.  2019.  IMSpec: An Extensible Approach to Exploring the Incorrect Usage of APIs. 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). :216—223.
Application Programming Interfaces (APIs) usually have usage constraints, such as call conditions or call orders. Incorrect usage of these constraints, called API misuse, will result in system crashes, bugs, and even security problems. It is crucial to detect such misuses early in the development process. Though many approaches have been proposed over the last years, recent studies show that API misuses are still prevalent, especially the ones specific to individual projects. In this paper, we strive to improve current API-misuse detection capability for large-scale C programs. First, We propose IMSpec, a lightweight domain-specific language enabling developers to specify API usage constraints in three different aspects (i.e., parameter validation, error handling, and causal calling), which are the majority of API-misuse bugs. Then, we have tailored a constraint guided static analysis engine to automatically parse IMSpec rules and detect API-misuse bugs with rich semantics. We evaluate our approach on widely used benchmarks and real-world projects. The results show that our easily extensible approach performs better than state-of-the-art tools. We also discover 19 previously unknown bugs in real-world open-source projects, all of which have been confirmed by the corresponding developers.
Zolfaghari, Majid, Salimi, Solmaz, Kharrazi, Mehdi.  2019.  Inferring API Correct Usage Rules: A Tree-based Approach. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :78—84.
The lack of knowledge about API correct usage rules is one of the main reasons that APIs are employed incorrectly by programmers, which in some cases lead to serious security vulnerabilities. However, finding a correct usage rule for an API is a time-consuming and error-prone task, particularly in the absence of an API documentation. Existing approaches to extract correct usage rules are mostly based on majority API usages, assuming the correct usage is prevalent. Although statistically extracting API correct usage rules achieves reasonable accuracy, it cannot work correctly in the absence of a fair amount of sample usages. We propose inferring API correct usage rules independent of the number of sample usages by leveraging an API tree structure. In an API tree, each node is an API, and each node's children are APIs called by the parent API. Starting from lower-level APIs, it is possible to infer the correct usage rules for them by utilizing the available correct usage rules of their children. We developed a tool based on our idea for inferring API correct usages rules hierarchically, and have applied it to the source code of Linux kernel v4.3 drivers and found 24 previously reported bugs.
Gu, Zuxing, Wu, Jiecheng, Liu, Jiaxiang, Zhou, Min, Gu, Ming.  2019.  An Empirical Study on API-Misuse Bugs in Open-Source C Programs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:11—20.
Today, large and complex software is developed with integrated components using application programming interfaces (APIs). Correct usage of APIs in practice presents a challenge due to implicit constraints, such as call conditions or call orders. API misuse, i.e., violation of these constraints, is a well-known source of bugs, some of which can cause serious security vulnerabilities. Although researchers have developed many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. In this paper, we provide a comprehensive empirical study on API-misuse bugs in open-source C programs. To understand the nature of API misuses in practice, we analyze 830 API-misuse bugs from six popular programs across different domains. For all the studied bugs, we summarize their root causes, fix patterns and usage statistics. Furthermore, to understand the capabilities and limitations of state-of-the-art static analysis detectors for API-misuse detection, we develop APIMU4C, a dataset of API-misuse bugs in C code based on our empirical study results, and evaluate three widely-used detectors on it qualitatively and quantitatively. We share all the findings and present possible directions towards more powerful API-misuse detectors.
Ge, Jingquan, Gao, Neng, Tu, Chenyang, Xiang, Ji, Liu, Zeyi.  2019.  More Secure Collaborative APIs Resistant to Flush+Reload and Flush+Flush Attacks on ARMv8-A. 2019 26th Asia-Pacific Software Engineering Conference (APSEC). :410—417.
With the popularity of smart devices such as mobile phones and tablets, the security problem of the widely used ARMv8-A processor has received more and more attention. Flush+Reload and Flush+Flush cache attacks have become two of the most important security threats due to their low noise and high resolution. In order to resist Flush+Reload and Flush+Flush attacks, researchers proposed many defense methods. However, these existing methods have various shortcomings. The runtime defense methods using hardware performance counters cannot detect attacks fast enough, effectively detect Flush+Flush or avoid a high false positive rate. Static code analysis schemes are powerless for obfuscation techniques. The approaches of permanently reducing the resolution can only be utilized on browser products and cannot be applied in the system. In this paper, we design two more secure collaborative APIs-flush operation API and high resolution time API-which can resist Flush+Reload and Flush+Flush attacks. When the flush operation API is called, the high resolution time API temporarily reduces its resolution and automatically restores. Moreover, the flush operation API also has the ability to detect and handle suspected Flush+Reload and Flush+Flush attacks. The attack and performance comparison experiments prove that the two APIs we designed are safer and the performance losses are acceptable.
Walla, Sebastian, Rossow, Christian.  2019.  MALPITY: Automatic Identification and Exploitation of Tarpit Vulnerabilities in Malware. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :590—605.
Law enforcement agencies regularly take down botnets as the ultimate defense against global malware operations. By arresting malware authors, and simultaneously infiltrating or shutting down a botnet's network infrastructures (such as C2 servers), defenders stop global threats and mitigate pending infections. In this paper, we propose malware tarpits, an orthogonal defense that does not require seizing botnet infrastructures, and at the same time can also be used to slow down malware spreading and infiltrate its monetization techniques. A tarpit is a network service that causes a client to stay busy with a network operation. Our work aims to automatically identify network operations used by malware that will block the malware either forever or for a significant amount of time. We describe how to non-intrusively exploit such tarpit vulnerabilities in malware to slow down or, ideally, even stop malware. Using dynamic malware analysis, we monitor how malware interacts with the POSIX and Winsock socket APIs. From this, we infer network operations that would have blocked when provided certain network inputs. We augment this vulnerability search with an automated generation of tarpits that exploit the identified vulnerabilities. We apply our prototype MALPITY on six popular malware families and discover 12 previously-unknown tarpit vulnerabilities, revealing that all families are susceptible to our defense. We demonstrate how to, e.g., halt Pushdo's DGA-based C2 communication, hinder SalityP2P peers from receiving commands or updates, and stop Bashlite's spreading engine.
Jin, Zhe, Chee, Kong Yik, Xia, Xin.  2019.  What Do Developers Discuss about Biometric APIs? 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :348—352.
With the emergence of biometric technology in various applications, such as access control (e.g. mobile lock/unlock), financial transaction (e.g. Alibaba smile-to-pay) and time attendance, the development of biometric system attracts increasingly interest to the developers. Despite a sound biometric system gains the security assurance and great usability, it is a rather challenging task to develop an effective biometric system. For instance, many public available biometric APIs do not provide sufficient instructions / precise documentations on the usage of biometric APIs. Many developers are struggling in implementing these APIs in various tasks. Moreover, quick update on biometric-based algorithms (e.g. feature extraction and matching) may propagate to APIs, which leads to potential confusion to the system developers. Hence, we conduct an empirical study to the problems that the developers currently encountered while implementing the biometric APIs as well as the issues that need to be addressed when developing biometric systems using these APIs. We manually analyzed a total of 500 biometric API-related posts from various online media such as Stack Overflow and Neurotechnology. We reveal that 1) most of the problems encountered are related to the lack of precise documentation on the biometric APIs; 2) the incompatibility of biometric APIs cross multiple implementation environments.
Singleton, Larry, Zhao, Rui, Song, Myoungkyu, Siy, Harvey.  2019.  FireBugs: Finding and Repairing Bugs with Security Patterns. 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MOBILESoft). :30—34.

Security is often a critical problem in software systems. The consequences of the failure lead to substantial economic loss or extensive environmental damage. Developing secure software is challenging, and retrofitting existing systems to introduce security is even harder. In this paper, we propose an automated approach for Finding and Repairing Bugs based on security patterns (FireBugs), to repair defects causing security vulnerabilities. To locate and fix security bugs, we apply security patterns that are reusable solutions comprising large amounts of software design experience in many different situations. In the evaluation, we investigated 2,800 Android app repositories to apply our approach to 200 subject projects that use javax.crypto APIs. The vision of our automated approach is to reduce software maintenance burdens where the number of outstanding software defects exceeds available resources. Our ultimate vision is to design more security patterns that have a positive impact on software quality by disseminating correlated sets of best security design practices and knowledge.

Mitra, Joydeep, Ranganath, Venkatesh-Prasad, Narkar, Aditya.  2019.  BenchPress: Analyzing Android App Vulnerability Benchmark Suites. 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). :13—18.
In recent years, various benchmark suites have been developed to evaluate the efficacy of Android security analysis tools. Tool developers often choose such suites based on the availability and popularity of suites and not on their characteristics and relevance due to the lack of information about them. In this context, based on a recent effort, we empirically evaluated four Android-specific benchmark suites: DroidBench, Ghera, ICCBench, and UBCBench. For each benchmark suite, we identified the APIs used by the suite that were discussed on Stack Overflow in the context of Android app development and measured the usage of these APIs in a sample of 227K real-world apps (coverage). We also identified security-related APIs used in real-world apps but not in any of the above benchmark suites to assess the opportunities to extend benchmark suites (gaps).
Hussain, Fatima, Li, Weiyue, Noye, Brett, Sharieh, Salah, Ferworn, Alexander.  2019.  Intelligent Service Mesh Framework for API Security and Management. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0735—0742.
With the advancements in enterprise-level business development, the demand for new applications and services is overwhelming. For the development and delivery of such applications and services, enterprise businesses rely on Application Programming Interfaces (APIs). API management and classification is a cumbersome task considering the rapid increase in the number of APIs, and API to API calls. API Mashups, domain APIs and API service mesh are a few recommended techniques for ease of API creation, management, and monitoring. API service mesh is considered as one of the techniques in this regard, in which the service plane and the control plane are separated for improving efficiency as well as security. In this paper, we propose and implement a security framework for the creation of a secure API service mesh using Istio and Kubernetes. Afterwards, we propose an smart association model for automatic association of new APIs to already existing categories of service mesh. To the best of our knowledge, this smart association model is the first of its kind.
2020-08-03
Juuti, Mika, Szyller, Sebastian, Marchal, Samuel, Asokan, N..  2019.  PRADA: Protecting Against DNN Model Stealing Attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :512–527.
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
2020-07-30
Garg, Hittu, Dave, Mayank.  2019.  Securing IoT Devices and SecurelyConnecting the Dots Using REST API and Middleware. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—6.

Internet of Things (IoT) is a fairly disruptive technology with inconceivable growth, impact, and capability. We present the role of REST API in the IoT Systems and some initial concepts of IoT, whose technology is able to record and count everything. We as well highlight the concept of middleware that connects these devices and cloud. The appearance of new IoT applications in the cloud has brought new threats to security and privacy of data. Therefore it is required to introduce a secure IoT system which doesn't allow attackers infiltration in the network through IoT devices and also to secure data in transit from IoT devices to cloud. We provide the details on how Representational State Transfer (REST) API allows to securely expose connected devices to applications on cloud and users. In the proposed model, middleware is primarily used to expose device data through REST and to hide details and act as an interface to the user to interact with sensor data.

2020-07-13
Fan, Wenjun, Ziembicka, Joanna, de Lemos, Rogério, Chadwick, David, Di Cerbo, Francesco, Sajjad, Ali, Wang, Xiao-Si, Herwono, Ian.  2019.  Enabling Privacy-Preserving Sharing of Cyber Threat Information in the Cloud. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–80.
Network threats often come from multiple sources and affect a variety of domains. Collaborative sharing and analysis of Cyber Threat Information (CTI) can greatly improve the prediction and prevention of cyber-attacks. However, CTI data containing sensitive and confidential information can cause privacy exposure and disclose security risks, which will deter organisations from sharing their CTI data. To address these concerns, the consortium of the EU H2020 project entitled Collaborative and Confidential Information Sharing and Analysis for Cyber Protection (C3ISP) has designed and implemented a framework (i.e. C3ISP Framework) as a service for cyber threat management. This paper focuses on the design and development of an API Gateway, which provides a bridge between end-users and their data sources, and the C3ISP Framework. It facilitates end-users to retrieve their CTI data, regulate data sharing agreements in order to sanitise the data, share the data with privacy-preserving means, and invoke collaborative analysis for attack prediction and prevention. In this paper, we report on the implementation of the API Gateway and experiments performed. The results of these experiments show the efficiency of our gateway design, and the benefits for the end-users who use it to access the C3ISP Framework.
2020-06-01
Halba, Khalid, Griffor, Edward, Kamongi, Patrick, Roth, Thomas.  2019.  Using Statistical Methods and Co-Simulation to Evaluate ADS-Equipped Vehicle Trustworthiness. 2019 Electric Vehicles International Conference (EV). :1–5.

With the increasing interest in studying Automated Driving System (ADS)-equipped vehicles through simulation, there is a growing need for comprehensive and agile middleware to provide novel Virtual Analysis (VA) functions of ADS-equipped vehicles towards enabling a reliable representation for pre-deployment test. The National Institute of Standards and Technology (NIST) Universal Cyber-physical systems Environment for Federation (UCEF) is such a VA environment. It provides Application Programming Interfaces (APIs) capable of ensuring synchronized interactions across multiple simulation platforms such as LabVIEW, OMNeT++, Ricardo IGNITE, and Internet of Things (IoT) platforms. UCEF can aid engineers and researchers in understanding the impact of different constraints associated with complex cyber-physical systems (CPS). In this work UCEF is used to produce a simulated Operational Domain Design (ODD) for ADS-equipped vehicles where control (drive cycle/speed pattern), sensing (obstacle detection, traffic signs and lights), and threats (unusual signals, hacked sources) are represented as UCEF federates to simulate a drive cycle and to feed it to vehicle dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) through the Functional Mock-up Interface (FMI). In this way we can subject the vehicle to a wide range of scenarios, collect data on the resulting interactions, and analyze those interactions using metrics to understand trustworthiness impact. Trustworthiness is defined here as in the NIST Framework for Cyber-Physical Systems, and is comprised of system reliability, resiliency, safety, security, and privacy. The goal of this work is to provide an example of an experimental design strategy using Fractional Factorial Design for statistically assessing the most important safety metrics in ADS-equipped vehicles.

2020-05-04
Zhou, Zichao, An, Changqing, Yang, Jiahai.  2018.  A Programmable Network Management Architecture for Address Driven Network. 2018 10th International Conference on Communications, Circuits and Systems (ICCCAS). :199–206.
The operation and management of network is facing increasing complexities brought by the evolution of network protocols and the demands of rapid service delivery. In this paper, we propose a programmable network management architecture, which manages network based on NETCONF protocol and provides REST APIs to upper layer so that further programming can be done based on the APIs to implement flexible management. Functions of devices can be modeled based on YANG language, and the models can be translated into REST APIs. We apply it to the management of ADN (Address Driven Network), an innovative network architecture proposed by Tsinghua University to inhibit IP spoofing, improve network security and provide high service quality. We model the functions of ADN based on YANG language, and implement the network management functions based on the REST APIs. We deploy and evaluate it in a laboratory environment. Test result shows that the programmable network management architecture is flexible to implement management for new network services.
2020-04-17
Burgess, Jonah, Carlin, Domhnall, O'Kane, Philip, Sezer, Sakir.  2019.  MANiC: Multi-step Assessment for Crypto-miners. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Modern Browsers have become sophisticated applications, providing a portal to the web. Browsers host a complex mix of interpreters such as HTML and JavaScript, allowing not only useful functionality but also malicious activities, known as browser-hijacking. These attacks can be particularly difficult to detect, as they usually operate within the scope of normal browser behaviour. CryptoJacking is a form of browser-hijacking that has emerged as a result of the increased popularity and profitability of cryptocurrencies, and the introduction of new cryptocurrencies that promote CPU-based mining. This paper proposes MANiC (Multi-step AssessmeNt for Crypto-miners), a system to detect CryptoJacking websites. It uses regular expressions that are compiled in accordance with the API structure of different miner families. This allows the detection of crypto-mining scripts and the extraction of parameters that could be used to detect suspicious behaviour associated with CryptoJacking. When MANiC was used to analyse the Alexa top 1m websites, it detected 887 malicious URLs containing miners from 11 different families and demonstrated favourable results when compared to related CryptoJacking research. We demonstrate that MANiC can be used to provide insights into this new threat, to identify new potential features of interest and to establish a ground-truth dataset, assisting future research.

2020-03-27
Liu, Yingying, Wang, Yiwei.  2019.  A Robust Malware Detection System Using Deep Learning on API Calls. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1456–1460.
With the development of technology, the massive malware become the major challenge to current computer security. In our work, we implemented a malware detection system using deep learning on API calls. By means of cuckoo sandbox, we extracted the API calls sequence of malicious programs. Through filtering and ordering the redundant API calls, we extracted the valid API sequences. Compared with GRU, BGRU, LSTM and SimpleRNN, we evaluated the BLSTM on the massive datasets including 21,378 samples. The experimental results demonstrate that BLSTM has the best performance for malware detection, reaching the accuracy of 97.85%.
Huang, Shiyou, Guo, Jianmei, Li, Sanhong, Li, Xiang, Qi, Yumin, Chow, Kingsum, Huang, Jeff.  2019.  SafeCheck: Safety Enhancement of Java Unsafe API. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :889–899.

Java is a safe programming language by providing bytecode verification and enforcing memory protection. For instance, programmers cannot directly access the memory but have to use object references. Yet, the Java runtime provides an Unsafe API as a backdoor for the developers to access the low- level system code. Whereas the Unsafe API is designed to be used by the Java core library, a growing community of third-party libraries use it to achieve high performance. The Unsafe API is powerful, but dangerous, which leads to data corruption, resource leaks and difficult-to-diagnose JVM crash if used improperly. In this work, we study the Unsafe crash patterns and propose a memory checker to enforce memory safety, thus avoiding the JVM crash caused by the misuse of the Unsafe API at the bytecode level. We evaluate our technique on real crash cases from the openJDK bug system and real-world applications from AJDK. Our tool reduces the efforts from several days to a few minutes for the developers to diagnose the Unsafe related crashes. We also evaluate the runtime overhead of our tool on projects using intensive Unsafe operations, and the result shows that our tool causes a negligible perturbation to the execution of the applications.

2020-03-18
Djoko, Judicael B., Lange, Jack, Lee, Adam J..  2019.  NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using Client-Side SGX. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :401–413.

With the rising popularity of file-sharing services such as Google Drive and Dropbox in the workflows of individuals and corporations alike, the protection of client-outsourced data from unauthorized access or tampering remains a major security concern. Existing cryptographic solutions to this problem typically require server-side support, involve non-trivial key management on the part of users, and suffer from severe re-encryption penalties upon access revocations. This combination of performance overheads and management burdens makes this class of solutions undesirable in situations where performant, platform-agnostic, dynamic sharing of user content is required. We present NEXUS, a stackable filesystem that leverages trusted hardware to provide confidentiality and integrity for user files stored on untrusted platforms. NEXUS is explicitly designed to balance security, portability, and performance: it supports dynamic sharing of protected volumes on any platform exposing a file access API without requiring server-side support, enables the use of fine-grained access control policies to allow for selective sharing, and avoids the key revocation and file re-encryption overheads associated with other cryptographic approaches to access control. This combination of features is made possible by the use of a client-side Intel SGX enclave that is used to protect and share NEXUS volumes, ensuring that cryptographic keys never leave enclave memory and obviating the need to reencrypt files upon revocation of access rights. We implemented a NEXUS prototype that runs on top of the AFS filesystem and show that it incurs ×2 overhead for a variety of common file and database operations.

2020-03-09
Joseph, Linda, Mukesh, Rajeswari.  2019.  To Detect Malware attacks for an Autonomic Self-Heal Approach of Virtual Machines in Cloud Computing. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:220–231.

Cloud Computing as of large is evolving at a faster pace with an ever changing set of cloud services. The amenities in the cloud are all enabled with respect to the public cloud services in their own enormous domain aspects commercially, which tend to be more insecure. These cloud services should be thus protected and secured which is very vital to the cloud infrastructures. Therefore, in this research work, we have identified security features with a self-heal approach that could be rendered on the infrastructure as a service (IaaS) in a private cloud environment. We have investigated the attack model from the virtual machine snapshots and have analyzed based on the supervised machine learning techniques. The virtual machines memory snapshots API call sequences are considered as input for the supervised and unsupervised machine learning algorithms to classify the attacked and the un-attacked virtual machine memory snapshots. The obtained set of the attacked virtual machine memory snapshots are given as input to the self-heal algorithm which is enabled to retrieve back the functionality of the virtual machines. Our method of detecting the malware attains about 93% of accuracy with respect to the virtual machine snapshots.

Niemiec, Marcin, Jaglarz, Piotr, Jekot, Marcin, Chołda, Piotr, Boryło, Piotr.  2019.  Risk Assessment Approach to Secure Northbound Interface of SDN Networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :164–169.
The most significant threats to networks usually originate from external entities. As such, the Northbound interface of SDN networks which ensures communication with external applications requires particularly close attention. In this paper we propose the Risk Assessment and Management approach to SEcure SDN (RAMSES). This novel solution is able to estimate the risk associated with traffic demand requests received via the Northbound-API in SDN networks. RAMSES quantifies the impact on network cost incurred by expected traffic demands and specifies the likelihood of adverse requests estimated using the reputation system. Accurate risk estimation allows SDN network administrators to make the right decisions and mitigate potential threat scenarios. This can be observed using extensive numerical verification based on an network optimization tool and several scenarios related to the reputation of the sender of the request. The verification of RAMSES confirmed the usefulness of its risk assessment approach to protecting SDN networks against threats associated with the Northbound-API.