Visible to the public Biblio

Filters: Keyword is system monitoring  [Clear All Filters]
2018-06-20
Chakraborty, S., Stokes, J. W., Xiao, L., Zhou, D., Marinescu, M., Thomas, A..  2017.  Hierarchical learning for automated malware classification. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :23–28.

Despite widespread use of commercial anti-virus products, the number of malicious files detected on home and corporate computers continues to increase at a significant rate. Recently, anti-virus companies have started investing in machine learning solutions to augment signatures manually designed by analysts. A malicious file's determination is often represented as a hierarchical structure consisting of a type (e.g. Worm, Backdoor), a platform (e.g. Win32, Win64), a family (e.g. Rbot, Rugrat) and a family variant (e.g. A, B). While there has been substantial research in automated malware classification, the aforementioned hierarchical structure, which can provide additional information to the classification models, has been ignored. In this paper, we propose the novel idea and study the performance of employing hierarchical learning algorithms for automated classification of malicious files. To the best of our knowledge, this is the first research effort which incorporates the hierarchical structure of the malware label in its automated classification and in the security domain, in general. It is important to note that our method does not require any additional effort by analysts because they typically assign these hierarchical labels today. Our empirical results on a real world, industrial-scale malware dataset of 3.6 million files demonstrate that incorporation of the label hierarchy achieves a significant reduction of 33.1% in the binary error rate as compared to a non-hierarchical classifier which is traditionally used in such problems.

2018-02-02
Sprabery, R., Estrada, Z. J., Kalbarczyk, Z., Iyer, R., Bobba, R. B., Campbell, R..  2017.  Trustworthy Services Built on Event-Based Probing for Layered Defense. 2017 IEEE International Conference on Cloud Engineering (IC2E). :215–225.

Numerous event-based probing methods exist for cloud computing environments allowing a hypervisor to gain insight into guest activities. Such event-based probing has been shown to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit detectors before a system can be patched, among others. Here, we illustrate how to use such probing for trustworthy logging and highlight some of the challenges that existing event-based probing mechanisms do not address. Challenges include ensuring a probe inserted at given address is trustworthy despite the lack of attestation available for probes that have been inserted dynamically. We show how probes can be inserted to ensure proper logging of every invocation of a probed instruction. When combined with attested boot of the hypervisor and guest machines, we can ensure the output stream of monitored events is trustworthy. Using these techniques we build a trustworthy log of certain guest-system-call events. The log powers a cloud-tuned Intrusion Detection System (IDS). New event types are identified that must be added to existing probing systems to ensure attempts to circumvent probes within the guest appear in the log. We highlight the overhead penalties paid by guests to increase guarantees of log completeness when faced with attacks on the guest kernel. Promising results (less that 10% for guests) are shown when a guest relaxes the trade-off between log completeness and overhead. Our demonstrative IDS detects common attack scenarios with simple policies built using our guest behavior recording system.

2017-12-20
Hirotomo, M., Nishio, Y., Kamizono, M., Fukuta, Y., Mohri, M., Shiraishi, Y..  2017.  Efficient Method for Analyzing Malicious Websites by Using Multi-Environment Analysis System. 2017 12th Asia Joint Conference on Information Security (AsiaJCIS). :48–54.
The malicious websites used by drive-by download attacks change their behavior for web client environments. To analyze the behavior of malicious websites, the single-environment analysis cannot obtain sufficient information. Hence, it is difficult to analyze the whole aspect of malicious websites. Also, the code obfuscation and cloaking are used in malicious websites to avoid to be analyzed their behavior. In this paper, we propose an analyzing method that combines decoding of the obfuscation code with dynamic analysis using multi-environment analysis system in order to analyze the behavior of the malicious websites in detail. Furthermore, we present two approaches to improve the multi-environment analysis. The first one is automation of traffic log analysis to reduce the cost of analyzing huge traffic logs between the environments and malicious websites. The second one is multimodal analysis for finding the URL of malicious websites.
2017-11-03
Dennis, R., Owenson, G., Aziz, B..  2016.  A Temporal Blockchain: A Formal Analysis. 2016 International Conference on Collaboration Technologies and Systems (CTS). :430–437.

This paper presents a possible solution to a fundamental limitation facing all blockchain-based systems; scalability. We propose a temporal rolling blockchain which solves the problem of its current exponential growth, instead replacing it with a constant fixed-size blockchain. We conduct a thorough analysis of related work and present a formal analysis of the new rolling blockchain, comparing the results to a traditional blockchain model to demonstrate that the deletion of data from the blockchain does not impact on the security of the proposed blockchain model before concluding our work and presenting future work to be conducted.

2017-03-07
Jain, N., Kalbande, D. R..  2015.  Digital forensic framework using feedback and case history keeper. 2015 International Conference on Communication, Information Computing Technology (ICCICT). :1–6.

Cyber crime investigation is the integration of two technologies named theoretical methodology and second practical tools. First is the theoretical digital forensic methodology that encompasses the steps to investigate the cyber crime. And second technology is the practically development of the digital forensic tool which sequentially and systematically analyze digital devices to extract the evidence to prove the crime. This paper explores the development of digital forensic framework, combine the advantages of past twenty five forensic models and generate a algorithm to create a new digital forensic model. The proposed model provides the following advantages, a standardized method for investigation, the theory of model can be directly convert into tool, a history lookup facility, cost and time minimization, applicable to any type of digital crime investigation.

2015-05-04
Barbosa de Carvalho, M., Pereira Esteves, R., da Cunha Rodrigues, G., Cassales Marquezan, C., Zambenedetti Granville, L., Rockenbach Tarouco, L.M..  2014.  Efficient configuration of monitoring slices for cloud platform administrators. Computers and Communication (ISCC), 2014 IEEE Symposium on. :1-7.

Monitoring is an important issue in cloud environments because it assures that acquired cloud slices attend the user's expectations. However, these environments are multitenant and dynamic, requiring automation techniques to offload cloud administrators. In a previous work, we proposed FlexACMS: a framework to automate monitoring configuration related to cloud slices using multiple monitoring solutions. In this work, we enhanced FlexACMS to allow dynamic and automatic attribution of monitoring configuration tasks to servers without administrator intervention, which was not available in previous version. FlexACMS also considers the monitoring server load when attributing configuration tasks, which allows load balancing between monitoring servers. The evaluation showed that enhancements reduced FlexACMS response time up to 60% in comparison to previous version. The scalability evaluation of enhanced version demonstrated the feasibility of our approach in large scale cloud environments.
 

2015-04-30
Youngjung Ahn, Yongsuk Lee, Jin-Young Choi, Gyungho Lee, Dongkyun Ahn.  2014.  Monitoring Translation Lookahead Buffers to Detect Code Injection Attacks. Computer. 47:66-72.

By identifying memory pages that external I/O operations have modified, a proposed scheme blocks malicious injected code activation, accurately distinguishing an attack from legitimate code injection with negligible performance impact and no changes to the user application.