Visible to the public Biblio

Filters: Keyword is system monitoring  [Clear All Filters]
2021-03-30
Ganfure, G. O., Wu, C.-F., Chang, Y.-H., Shih, W.-K..  2020.  DeepGuard: Deep Generative User-behavior Analytics for Ransomware Detection. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

In the last couple of years, the move to cyberspace provides a fertile environment for ransomware criminals like ever before. Notably, since the introduction of WannaCry, numerous ransomware detection solution has been proposed. However, the ransomware incidence report shows that most organizations impacted by ransomware are running state of the art ransomware detection tools. Hence, an alternative solution is an urgent requirement as the existing detection models are not sufficient to spot emerging ransomware treat. With this motivation, our work proposes "DeepGuard," a novel concept of modeling user behavior for ransomware detection. The main idea is to log the file-interaction pattern of typical user activity and pass it through deep generative autoencoder architecture to recreate the input. With sufficient training data, the model can learn how to reconstruct typical user activity (or input) with minimal reconstruction error. Hence, by applying the three-sigma limit rule on the model's output, DeepGuard can distinguish the ransomware activity from the user activity. The experiment result shows that DeepGuard effectively detects a variant class of ransomware with minimal false-positive rates. Overall, modeling the attack detection with user-behavior permits the proposed strategy to have deep visibility of various ransomware families.

2021-03-04
Moskvichev, A. D., Dolgachev, M. V..  2020.  System of Collection and Analysis Event Log from Sources under Control of Windows Operating System. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

The purpose of this work is to implement a universal system for collecting and analyzing event logs from sources that use the Windows operating system. The authors use event-forwarding technology to collect data from logs. Security information and event management detects incidents from received events. The authors analyze existing methods for transmitting event log entries from sources running the Windows operating system. This article describes in detail how to connect event sources running on the Windows operating system to the event collector without connecting to a domain controller. Event sources are authenticated using certificates created by the event collector. The authors suggest a scheme for connecting the event collector to security information and event management. Security information and event management must meet the requirements for use in conjunction with event forwarding technology. The authors of the article demonstrate the scheme of the test stand and the result of testing the event forwarding technology.

2020-11-17
Singh, M., Butakov, S., Jaafar, F..  2018.  Analyzing Overhead from Security and Administrative Functions in Virtual Environment. 2018 International Conference on Platform Technology and Service (PlatCon). :1—6.
The paper provides an analysis of the performance of an administrative component that helps the hypervisor to manage the resources of guest operating systems under fluctuation workload. The additional administrative component provides an extra layer of security to the guest operating systems and system as a whole. In this study, an administrative component was implemented by using Xen-hypervisor based para-virtualization technique and assigned some additional roles and responsibilities that reduce hypervisor workload. The study measured the resource utilizations of an administrative component when excessive input/output load passes passing through the system. Performance was measured in terms of bandwidth and CPU utilisation Based on the analysis of administrative component performance recommendations have been provided with the goal to improve system availability. Recommendations included detection of the performance saturation point that indicates the necessity to start load balancing procedures for the administrative component in the virtualized environment.
2020-11-02
Pinisetty, Srinivas, Schneider, Gerardo, Sands, David.  2018.  Runtime Verification of Hyperproperties for Deterministic Programs. 2018 IEEE/ACM 6th International FME Workshop on Formal Methods in Software Engineering (FormaliSE). :20—29.
In this paper, we consider the runtime verification problem of safety hyperproperties for deterministic programs. Several security and information-flow policies such as data minimality, non-interference, integrity, and software doping are naturally expressed formally as safety hyperproperties. Although there are monitoring results for hyperproperties, the algorithms are very complex since these are properties over set of traces, and not over single traces. For the deterministic input-output programs that we consider, and the specific safety hyperproperties we are interested in, the problem can be reduced to monitoring of trace properties. In this paper, we present a simpler monitoring approach for safety hyperproperties of deterministic programs. The approach involves transforming the given safety hyperproperty into a trace property, extracting a characteristic predicate for the given hyperproperty, and providing a parametric monitor taking such predicate as parameter. For any hyperproperty in the considered subclass, we show how runtime verification monitors can be synthesised. We have implemented our approach in the form of a parameterised monitor for the given class, and have applied it to a number of hyperproperties including data minimisation, non-interference, integrity and software doping. We show results concerning both offline and online monitoring.
2020-10-30
Xu, Lai, Yu, Rongwei, Wang, Lina, Liu, Weijie.  2019.  Memway: in-memorywaylaying acceleration for practical rowhammer attacks against binaries. Tsinghua Science and Technology. 24:535—545.

The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory (DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying algorithm can be easily detected during page cache eviction because of its high disk I/O overhead and long running time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both I/O overhead and speed. Running time and disk I/O overhead are reduced by 90% by utilizing Linux tmpfs and inmemory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix fadvise API, the binary relocation step is made 100 times faster. Equipped with our Memway+fadvise relocation scheme, we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary, and less than 3 seconds to flip the target instruction bit.

2020-10-16
Hussain, Mukhtar, Foo, Ernest, Suriadi, Suriadi.  2019.  An Improved Industrial Control System Device Logs Processing Method for Process-Based Anomaly Detection. 2019 International Conference on Frontiers of Information Technology (FIT). :150—1505.

Detecting process-based attacks on industrial control systems (ICS) is challenging. These cyber-attacks are designed to disrupt the industrial process by changing the state of a system, while keeping the system's behaviour close to the expected behaviour. Such anomalous behaviour can be effectively detected by an event-driven approach. Petri Net (PN) model identification has proved to be an effective method for event-driven system analysis and anomaly detection. However, PN identification-based anomaly detection methods require ICS device logs to be converted into event logs (sequence of events). Therefore, in this paper we present a formalised method for pre-processing and transforming ICS device logs into event logs. The proposed approach outperforms the previous methods of device logs processing in terms of anomaly detection. We have demonstrated the results using two published datasets.

2020-09-21
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
Osman, Amr, Bruckner, Pascal, Salah, Hani, Fitzek, Frank H. P., Strufe, Thorsten, Fischer, Mathias.  2019.  Sandnet: Towards High Quality of Deception in Container-Based Microservice Architectures. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Responding to network security incidents requires interference with ongoing attacks to restore the security of services running on production systems. This approach prevents damage, but drastically impedes the collection of threat intelligence and the analysis of vulnerabilities, exploits, and attack strategies. We propose the live confinement of suspicious microservices into a sandbox network that allows to monitor and analyze ongoing attacks under quarantine and that retains an image of the vulnerable and open production network. A successful sandboxing requires that it happens completely transparent to and cannot be detected by an attacker. Therefore, we introduce a novel metric to measure the Quality of Deception (QoD) and use it to evaluate three proposed network deception mechanisms. Our evaluation results indicate that in our evaluation scenario in best case, an optimal QoD is achieved. In worst case, only a small downtime of approx. 3s per microservice (MS) occurs and thus a momentary drop in QoD to 70.26% before it converges back to optimum as the quarantined services are restored.
2020-08-24
Webb, Josselyn A., Henderson, Michelle W., Webb, Michael L..  2019.  An Open Source Approach to Automating Surveillance and Compliance of Automatic Test Systems. 2019 IEEE AUTOTESTCON. :1–8.
With the disconnected nature of some Automatic Test Systems, there is no possibility for a centralized infrastructure of sense and response in Cybersecurity. For scalability, a cost effective onboard approach will be necessary. In smaller companies where connectivity is not a concern, costly commercial solutions will impede the implementation of surveillance and compliance options. In this paper we propose to demonstrate an open source strategy using freely available Security Technical Implementation Guidelines (STIGs), internet resources, and supporting software stacks, such as OpenScap, HubbleStack, and (ElasticSearch, Logstash, and Kibana (ElasticStack)) to deliver an affordable solution to this problem. OpenScap will provide tools for managing system security and standards compliance. HubbleStack will be employed to automate compliance via its components: NOVA (an auditing engine), Nebula (osquery integration), Pulsar (event system) and Quasar (reporting system). Our intention is utilize NOVA in conjunction with OpenScap to CVE (Common Vulnerabilities and Exposures) scan and netstat for open ports and processes. Additionally we will monitor services and status, firewall settings, and use Nebula's integration of Facebook's osquery to detect vulnerabilities by querying the Operating System. Separately we plan to use Pulsar, a fast file integrity manger, to monitor the integrity of critical files such as system, test, and Hardware Abstraction Layer (HAL) software to ensure the system retains its integrity. All of this will be reported by Quasar, HubbleStack's reporting engine. We will provide situational awareness through the use of the open source Elastic Stack. ElasticSearch is a RESTful search and analytics engine. Logstash is an open source data processing pipeline that enables the ingestion of data from multiple sources sending it through extensible interfaces, in this case ElasticSearch. Kibana supports the visualization of data. Essentially Elastic Stack will be the presentation layer, HubbleStack will be the broker of the data to Elastic Stash, with the other HubbleStack components feeding that data. All of the tools involved are open source in nature, reducing the cost to the overhead required to keep configurations up to date, training on use, and analytics required to review the outputs.
2020-06-03
Duy, Phan The, Do Hoang, Hien, Thu Hien, Do Thi, Ba Khanh, Nguyen, Pham, Van-Hau.  2019.  SDNLog-Foren: Ensuring the Integrity and Tamper Resistance of Log Files for SDN Forensics using Blockchain. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS). :416—421.

Despite bringing many benefits of global network configuration and control, Software Defined Networking (SDN) also presents potential challenges for both digital forensics and cybersecurity. In fact, there are various attacks targeting a range of vulnerabilities on vital elements of this paradigm such as controller, Northbound and Southbound interfaces. In addition to solutions of security enhancement, it is important to build mechanisms for digital forensics in SDN which provide the ability to investigate and evaluate the security of the whole network system. It should provide features of identifying, collecting and analyzing log files and detailed information about network devices and their traffic. However, upon penetrating a machine or device, hackers can edit, even delete log files to remove the evidences about their presence and actions in the system. In this case, securing log files with fine-grained access control in proper storage without any modification plays a crucial role in digital forensics and cybersecurity. This work proposes a blockchain-based approach to improve the security of log management in SDN for network forensics, called SDNLog-Foren. This model is also evaluated with different experiments to prove that it can help organizations keep sensitive log data of their network system in a secure way regardless of being compromised at some different components of SDN.

2020-04-17
Tian, Donghai, Ma, Rui, Jia, Xiaoqi, Hu, Changzhen.  2019.  A Kernel Rootkit Detection Approach Based on Virtualization and Machine Learning. IEEE Access. 7:91657—91666.

OS kernel is the core part of the operating system, and it plays an important role for OS resource management. A popular way to compromise OS kernel is through a kernel rootkit (i.e., malicious kernel module). Once a rootkit is loaded into the kernel space, it can carry out arbitrary malicious operations with high privilege. To defeat kernel rootkits, many approaches have been proposed in the past few years. However, existing methods suffer from some limitations: 1) most methods focus on user-mode rootkit detection; 2) some methods are limited to detect obfuscated kernel modules; and 3) some methods introduce significant performance overhead. To address these problems, we propose VKRD, a kernel rootkit detection system based on the hardware assisted virtualization technology. Compared with previous methods, VKRD can provide a transparent and an efficient execution environment for the target kernel module to reveal its run-time behavior. To select the important run-time features for training our detection models, we utilize the TF-IDF method. By combining the hardware assisted virtualization and machine learning techniques, our kernel rootkit detection solution could be potentially applied in the cloud environment. The experiments show that our system can detect windows kernel rootkits with high accuracy and moderate performance cost.

2020-04-06
Patsonakis, Christos, Samari, Katerina, Kiayiasy, Aggelos, Roussopoulos, Mema.  2019.  On the Practicality of a Smart Contract PKI. 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). :109–118.
Public key infrastructures (PKIs) are one of the main building blocks for securing communications over the Internet. Currently, PKIs are under the control of centralized authorities, which is problematic as evidenced by numerous incidents where they have been compromised. The distributed, fault tolerant log of transactions provided by blockchains and more recently, smart contract platforms, constitutes a powerful tool for the decentralization of PKIs. To verify the validity of identity records, blockchain-based identity systems store on chain either all identity records, or, a small (or even constant) sized amount of data for verifying identity records stored off chain. However, as most of these systems have never been implemented, there is little information regarding the practical implications of each design's tradeoffs. In this work, we first implement and evaluate the only provably secure, smart contract based PKI of Patsonakis et al. on top of Ethereum. This construction incurs constant-sized storage at the expense of computational complexity. To explore this tradeoff, we propose and implement a second construction which, eliminates the need for trusted setup, preserves the security properties of Patsonakis et al. and, as illustrated through our evaluation, is the only version with constant-sized state that can be deployed on the live chain of Ethereum. Furthermore, we compare these two systems with the simple approach of most prior works, e.g., the Ethereum Name Service, where all identity records are stored on the smart contract's state, to illustrate several shortcomings of Ethereum and its cost model. We propose several modifications for fine tuning the model, which would be useful to be considered for any smart contract platform like Ethereum so that it reaches its full potential to support arbitrary distributed applications.
2020-03-27
Liu, Wenqing, Zhang, Kun, Tu, Bibo, Lin, Kunli.  2019.  HyperPS: A Hypervisor Monitoring Approach Based on Privilege Separation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :981–988.

In monolithic operating system (OS), any error of system software can be exploit to destroy the whole system. The situation becomes much more severe in cloud environment, when the kernel and the hypervisor share the same address space. The security of guest Virtual Machines (VMs), both sensitive data and vital code, can no longer be guaranteed, once the hypervisor is compromised. Therefore, it is essential to deploy some security approaches to secure VMs, regardless of the hypervisor is safe or not. Some approaches propose microhypervisor reducing attack surface, or a new software requiring a higher privilege level than hypervisor. In this paper, we propose a novel approach, named HyperPS, which separates the fundamental and crucial privilege into a new trusted environment in order to monitor hypervisor. A pivotal condition for HyperPS is that hypervisor must not be allowed to manipulate any security-sensitive system resources, such as page tables, system control registers, interaction between VM and hypervisor as well as VM memory mapping. Besides, HyperPS proposes a trusted environment which does not rely on any higher privilege than the hypervisor. We have implemented a prototype for KVM hypervisor on x86 platform with multiple VMs running Linux. KVM with HyperPS can be applied to current commercial cloud computing industry with portability. The security analysis shows that this approach can provide effective monitoring against attacks, and the performance evaluation confirms the efficiency of HyperPS.

2020-03-18
Kalashnikov, A.O., Anikina, E.V..  2019.  Complex Network Cybersecurity Monitoring Method. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
This paper considers one of the methods of efficient allocation of limited resources in special-purpose devices (sensors) to monitor complex network unit cybersecurity.
2020-03-09
Zhan, Dongyang, Li, Huhua, Ye, Lin, Zhang, Hongli, Fang, Binxing, Du, Xiaojiang.  2019.  A Low-Overhead Kernel Object Monitoring Approach for Virtual Machine Introspection. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Monitoring kernel object modification of virtual machine is widely used by virtual-machine-introspection-based security monitors to protect virtual machines in cloud computing, such as monitoring dentry objects to intercept file operations, etc. However, most of the current virtual machine monitors, such as KVM and Xen, only support page-level monitoring, because the Intel EPT technology can only monitor page privilege. If the out-of-virtual-machine security tools want to monitor some kernel objects, they need to intercept the operation of the whole memory page. Since there are some other objects stored in the monitored pages, the modification of them will also trigger the monitor. Therefore, page-level memory monitor usually introduces overhead to related kernel services of the target virtual machine. In this paper, we propose a low-overhead kernel object monitoring approach to reduce the overhead caused by page-level monitor. The core idea is to migrate the target kernel objects to a protected memory area and then to monitor the corresponding new memory pages. Since the new pages only contain the kernel objects to be monitored, other kernel objects will not trigger our monitor. Therefore, our monitor will not introduce runtime overhead to the related kernel service. The experimental results show that our system can monitor target kernel objects effectively only with very low overhead.

2020-02-10
Dan, Kenya, Kitagawa, Naoya, Sakuraba, Shuji, Yamai, Nariyoshi.  2019.  Spam Domain Detection Method Using Active DNS Data and E-Mail Reception Log. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:896–899.

E-mail is widespread and an essential communication technology in modern times. Since e-mail has problems with spam mails and spoofed e-mails, countermeasures are required. Although SPF, DKIM and DMARC have been proposed as sender domain authentication, these mechanisms cannot detect non-spoofing spam mails. To overcome this issue, this paper proposes a method to detect spam domains by supervised learning with features extracted from e-mail reception log and active DNS data, such as the result of Sender Authentication, the Sender IP address, the number of each DNS record, and so on. As a result of the experiment, our method can detect spam domains with 88.09% accuracy and 97.11% precision. We confirmed that our method can detect spam domains with detection accuracy 19.40% higher than the previous study by utilizing not only active DNS data but also e-mail reception log in combination.

2020-01-20
Zhu, Lipeng, Fu, Xiaotong, Yao, Yao, Zhang, Yuqing, Wang, He.  2019.  FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.
2020-01-13
Kabiri, Peyman, Chavoshi, Mahdieh.  2019.  Destructive Attacks Detection and Response System for Physical Devices in Cyber-Physical Systems. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.

Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.

2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2019-08-26
Gries, S., Hesenius, M., Gruhn, V..  2018.  Embedding Non-Compliant Nodes into the Information Flow Monitor by Dependency Modeling. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). :1541-1542.

Observing semantic dependencies in large and heterogeneous networks is a critical task, since it is quite difficult to find the actual source of a malfunction in the case of an error. Dependencies might exist between many network nodes and among multiple hops in paths. If those dependency structures are unknown, debugging errors gets quite difficult. Since CPS and other large networks change at runtime and consists of custom software and hardware, as well as components off-the-shelf, it is necessary to be able to not only include own components in approaches to detect dependencies between nodes. In this paper we present an extension to the Information Flow Monitor approach. Our goal is that this approach should be able to handle unalterable blackbox nodes. This is quite challenging, since the IFM originally requires each network node to be compliant with the IFM protocol.

2019-06-24
Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.

2019-02-13
Gevargizian, J., Kulkarni, P..  2018.  MSRR: Measurement Framework For Remote Attestation. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :748–753.
Measurers are critical to a remote attestation (RA) system to verify the integrity of a remote untrusted host. Run-time measurers in a dynamic RA system sample the dynamic program state of the host to form evidence in order to establish trust by a remote system (appraiser). However, existing run-time measurers are tightly integrated with specific software. Such measurers need to be generated anew for each software, which is a manual process that is both challenging and tedious. In this paper we present a novel approach to decouple application-specific measurement policies from the measurers tasked with performing the actual run-time measurement. We describe MSRR (MeaSeReR), a novel general-purpose measurement framework that is agnostic of the target application. We show how measurement policies written per application can use MSRR, eliminating much time and effort spent on reproducing core measurement functionality. We describe MSRR's robust querying language, which allows the appraiser to accurately specify the what, when, and how to measure. We evaluate MSRR's overhead and demonstrate its functionality.
2019-01-16
Upadhyay, H., Gohel, H. A., Pons, A., Lagos, L..  2018.  Windows Virtualization Architecture For Cyber Threats Detection. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :119–122.

This is very true for the Windows operating system (OS) used by government and private organizations. With Windows, the closed source nature of the operating system has unfortunately meant that hidden security issues are discovered very late and the fixes are not found in real time. There needs to be a reexamination of current static methods of malware detection. This paper presents an integrated system for automated and real-time monitoring and prediction of rootkit and malware threats for the Windows OS. We propose to host the target Windows machines on the widely used Xen hypervisor, and collect process behavior using virtual memory introspection (VMI). The collected data will be analyzed using state of the art machine learning techniques to quickly isolate malicious process behavior and alert system administrators about potential cyber breaches. This research has two focus areas: identifying memory data structures and developing prediction tools to detect malware. The first part of research focuses on identifying memory data structures affected by malware. This includes extracting the kernel data structures with VMI that are frequently targeted by rootkits/malware. The second part of the research will involve development of a prediction tool using machine learning techniques.

2018-09-12
Domínguez, A., Carballo, P. P., Núñez, A..  2017.  Programmable SoC platform for deep packet inspection using enhanced Boyer-Moore algorithm. 2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :1–8.

This paper describes the work done to design a SoC platform for real-time on-line pattern search in TCP packets for Deep Packet Inspection (DPI) applications. The platform is based on a Xilinx Zynq programmable SoC and includes an accelerator that implements a pattern search engine that extends the original Boyer-Moore algorithm with timing and logical rules, that produces a very complex set of rules. Also, the platform implements different modes of operation, including SIMD and MISD parallelism, which can be configured on-line. The platform is scalable depending of the analysis requirement up to 8 Gbps. High-Level synthesis and platform based design methodologies have been used to reduce the time to market of the completed system.

2018-08-23
Ning, F., Wen, Y., Shi, G., Meng, D..  2017.  Efficient tamper-evident logging of distributed systems via concurrent authenticated tree. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–9.
Secure logging as an indispensable part of any secure system in practice is well-understood by both academia and industry. However, providing security for audit logs on an untrusted machine in a large distributed system is still a challenging task. The emergence and wide availability of log management tools prompted plenty of work in the security community that allows clients or auditors to verify integrity of the log data. Most recent solutions to this problem focus on the space-efficiency or public verifiability of forward security. Unfortunately, existing secure audit logging schemes have significant performance limitations that make them impractical for realtime large-scale distributed applications: Existing cryptographic hashing is computationally expensive for logging in task intensive or resource-constrained systems especially to prove individual log events, while Merkle-tree approach has fundamental limitations when face with highly concurrent, large-scale log streams due to its serially appending feature. The verification step of Merkle-tree based approach requiring a logarithmic number of hash computations is becoming a bottleneck to improve the overall performance. There is a huge gap between the flux of log streams collected and the computational efficiency of integrity verification in the large-scale distributed systems. In this work, we develop a novel scheme, performance of which favorably compares with the existing solutions. The performance guarantees that we achieve stem from a novel data structure called concurrent authenticated tree, which allows log events concurrently appending and removes the need to wait for append operations to complete sequentially. We implement a prototype using chameleon hashing based on discrete log and Merkle history tree. A comprehensive experimental evaluation of the proposed and existing approaches is used to validate the analytical models and verify our claims. The results demonstrate that our proposed scheme verifying in a concurrent way is significantly more efficient than the previous tree-based approach.