Biblio
This paper introduces the first state-based formalization of isolation guarantees. Our approach is premised on a simple observation: applications view storage systems as black-boxes that transition through a series of states, a subset of which are observed by applications. Defining isolation guarantees in terms of these states frees definitions from implementation-specific assumptions. It makes immediately clear what anomalies, if any, applications can expect to observe, thus bridging the gap that exists today between how isolation guarantees are defined and how they are perceived. The clarity that results from definitions based on client-observable states brings forth several benefits. First, it allows us to easily compare the guarantees of distinct, but semantically close, isolation guarantees. We find that several well-known guarantees, previously thought to be distinct, are in fact equivalent, and that many previously incomparable flavors of snapshot isolation can be organized in a clean hierarchy. Second, freeing definitions from implementation-specific artefacts can suggest more efficient implementations of the same isolation guarantee. We show how a client-centric implementation of parallel snapshot isolation can be more resilient to slowdown cascades, a common phenomenon in large-scale datacenters.
We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal encoding and decoding complexities, from the EVENODD codes and B codes, which are array codes widely used in the RAID architecture. These schemes optimally tolerate two node failures and two eavesdropping nodes. For more general parameters, we construct efficient systematic secure RAID schemes from Reed-Solomon codes. Our results suggest that building “keyless”, information-theoretic security into the RAID architecture is practical.
This paper presents a possible solution to a fundamental limitation facing all blockchain-based systems; scalability. We propose a temporal rolling blockchain which solves the problem of its current exponential growth, instead replacing it with a constant fixed-size blockchain. We conduct a thorough analysis of related work and present a formal analysis of the new rolling blockchain, comparing the results to a traditional blockchain model to demonstrate that the deletion of data from the blockchain does not impact on the security of the proposed blockchain model before concluding our work and presenting future work to be conducted.
In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.