Visible to the public Biblio

Filters: Keyword is Sophisticated Attacks  [Clear All Filters]
2020-07-27
Vöelp, Marcus, Esteves-Verissimo, Paulo.  2018.  Intrusion-Tolerant Autonomous Driving. 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC). :130–133.
Fully autonomous driving is one if not the killer application for the upcoming decade of real-time systems. However, in the presence of increasingly sophisticated attacks by highly skilled and well equipped adversarial teams, autonomous driving must not only guarantee timeliness and hence safety. It must also consider the dependability of the software concerning these properties while the system is facing attacks. For distributed systems, fault-and-intrusion tolerance toolboxes already offer a few solutions to tolerate partial compromise of the system behind a majority of healthy components operating in consensus. In this paper, we present a concept of an intrusion-tolerant architecture for autonomous driving. In such a scenario, predictability and recovery challenges arise from the inclusion of increasingly more complex software on increasingly less predictable hardware. We highlight how an intrusion tolerant design can help solve these issues by allowing timeliness to emerge from a majority of complex components being fast enough, often enough while preserving safety under attack through pre-computed fail safes.
2020-04-20
Lecuyer, Mathias, Atlidakis, Vaggelis, Geambasu, Roxana, Hsu, Daniel, Jana, Suman.  2019.  Certified Robustness to Adversarial Examples with Differential Privacy. 2019 IEEE Symposium on Security and Privacy (SP). :656–672.
Adversarial examples that fool machine learning models, particularly deep neural networks, have been a topic of intense research interest, with attacks and defenses being developed in a tight back-and-forth. Most past defenses are best effort and have been shown to be vulnerable to sophisticated attacks. Recently a set of certified defenses have been introduced, which provide guarantees of robustness to norm-bounded attacks. However these defenses either do not scale to large datasets or are limited in the types of models they can support. This paper presents the first certified defense that both scales to large networks and datasets (such as Google's Inception network for ImageNet) and applies broadly to arbitrary model types. Our defense, called PixelDP, is based on a novel connection between robustness against adversarial examples and differential privacy, a cryptographically-inspired privacy formalism, that provides a rigorous, generic, and flexible foundation for defense.
2019-02-14
Leemaster, J., Vai, M., Whelihan, D., Whitman, H., Khazan, R..  2018.  Functionality and Security Co-Design Environment for Embedded Systems. 2018 IEEE High Performance Extreme Computing Conference (HPEC). :1-5.

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.

2018-05-01
Paudel, Sarita, Smith, Paul, Zseby, Tanja.  2017.  Attack Models for Advanced Persistent Threats in Smart Grid Wide Area Monitoring. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :61–66.

Wide Area Monitoring Systems (WAMSs) provide an essential building block for Smart Grid supervision and control. Distributed Phasor Measurement Units (PMUs) allow accurate clock-synchronized measurements of voltage and current phasors (amplitudes, phase angles) and frequencies. The sensor data from PMUs provide situational awareness in the grid, and are used as input for control decisions. A modification of sensor data can severely impact grid stability, overall power supply, and physical devices. Since power grids are critical infrastructures, WAMSs are tempting targets for all kinds of attackers, including well-organized and motivated adversaries such as terrorist groups or adversarial nation states. Such groups possess sufficient resources to launch sophisticated attacks. In this paper, we provide an in-depth analysis of attack possibilities on WAMSs. We model the dependencies and building blocks of Advanced Persistent Threats (APTs) on WAMSs using attack trees. We consider the whole WAMS infrastructure, including aggregation and data collection points, such as Phasor Data Concentrators (PDCs), classical IT components, and clock synchronization. Since Smart Grids are cyber-physical systems, we consider physical perturbations, in addition to cyber attacks in our models. The models provide valuable information about the chain of cyber or physical attack steps that can be combined to build a sophisticated attack for reaching a higher goal. They assist in the assessment of physical and cyber vulnerabilities, and provide strategic guidance for the deployment of suitable countermeasures.