Biblio
Traffic identification becomes more important yet more challenging as related encryption techniques are rapidly developing nowadays. In difference to recent deep learning methods that apply image processing to solve such encrypted traffic problems, in this paper, we propose a method named Payload Encoding Representation from Transformer (PERT) to perform automatic traffic feature extraction using a state-of-the-art dynamic word embedding technique. Based on this, we further provide a traffic classification framework in which unlabeled traffic is utilized to pre-train an encoding network that learns the contextual distribution of traffic payload bytes. Then, the downward classification reuses the pre-trained network to obtain an enhanced classification result. By implementing experiments on a public encrypted traffic data set and our captured Android HTTPS traffic, we prove the proposed method can achieve an obvious better effectiveness than other compared baselines. To the best of our knowledge, this is the first time the encrypted traffic classification with the dynamic word embedding alone with its pre-training strategy has been addressed.
Nowadays, Internet Service Providers (ISPs) have been depending on Deep Packet Inspection (DPI) approaches, which are the most precise techniques for traffic identification and classification. However, constructing high performance DPI approaches imposes a vigilant and an in-depth computing system design because the demands for the memory and processing power. Membership query data structures, specifically Bloom filter (BF), have been employed as a matching check tool in DPI approaches. It has been utilized to store signatures fingerprint in order to examine the presence of these signatures in the incoming network flow. The main issue that arise when employing Bloom filter in DPI approaches is the need to use k hash functions which, in turn, imposes more calculations overhead that degrade the performance. Consequently, in this paper, a new design and implementation for a DPI approach have been proposed. This DPI utilizes a membership query data structure called Cuckoo filter (CF) as a matching check tool. CF has many advantages over BF like: less memory consumption, less false positive rate, higher insert performance, higher lookup throughput, support delete operation. The achieved experiments show that the proposed approach offers better performance results than others that utilize Bloom filter.
Network traffic identification has been a hot topic in network security area. The identification of abnormal traffic can detect attack traffic and helps network manager enforce corresponding security policies to prevent attacks. Support Vector Machines (SVMs) are one of the most promising supervised machine learning (ML) algorithms that can be applied to the identification of traffic in IP networks as well as detection of abnormal traffic. SVM shows better performance because it can avoid local optimization problems existed in many supervised learning algorithms. However, as a binary classification approach, SVM needs more research in multiclass classification. In this paper, we proposed an abnormal traffic identification system(ATIS) that can classify and identify multiple attack traffic applications. Each component of ATIS is introduced in detail and experiments are carried out based on ATIS. Through the test of KDD CUP dataset, SVM shows good performance. Furthermore, the comparison of experiments reveals that scaling and parameters has a vital impact on SVM training results.