Visible to the public Biblio

Filters: Keyword is support vector machine classification  [Clear All Filters]
2023-02-17
Sasikala, V., Mounika, K., Sravya Tulasi, Y., Gayathri, D., Anjani, M..  2022.  Performance evaluation of Spam and Non-Spam E-mail detection using Machine Learning algorithms. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :1359–1365.
All of us are familiar with the importance of social media in facilitating communication. e-mail is one of the safest social media platforms for online communications and information transfer over the internet. As of now, many people rely on email or communications provided by strangers. Because everyone may send emails or a message, spammers have a great opportunity to compose spam messages about our many hobbies and passions, interests, and concerns. Our internet speeds are severely slowed down by spam, which also collects personal information like our phone numbers from our contact list. There is a lot of work involved in identifying these fraudsters and also identifying spam content. Email spam refers to the practice of sending large numbers of messages via email. The recipient bears the bulk of the cost of spam, therefore it's practically free advertising. Spam email is a form of commercial advertising for hackers that is financially viable due of the low cost of sending email. Anti-spam filters have become increasingly important as the volume of unwanted bulk e-mail (also spamming) grows. We can define a message, if it is a spam or not using this proposed model. Machine learning algorithms can be discussed in detail, and our data sets will be used to test them all, with the goal of identifying the one that is most accurate and precise in its identification of email spam. Society of machine learning techniques for detecting unsolicited mass email and spam.
Alimi, Oyeniyi Akeem, Ouahada, Khmaies, Abu-Mahfouz, Adnan M., Rimer, Suvendi, Alimi, Kuburat Oyeranti Adefemi.  2022.  Supervised learning based intrusion detection for SCADA systems. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1–5.
Supervisory control and data acquisition (SCADA) systems play pivotal role in the operation of modern critical infrastructures (CIs). Technological advancements, innovations, economic trends, etc. have continued to improve SCADA systems effectiveness and overall CIs’ throughput. However, the trends have also continued to expose SCADA systems to security menaces. Intrusions and attacks on SCADA systems can cause service disruptions, equipment damage or/and even fatalities. The use of conventional intrusion detection models have shown trends of ineffectiveness due to the complexity and sophistication of modern day SCADA attacks and intrusions. Also, SCADA characteristics and requirement necessitate exceptional security considerations with regards to intrusive events’ mitigations. This paper explores the viability of supervised learning algorithms in detecting intrusions specific to SCADA systems and their communication protocols. Specifically, we examine four supervised learning algorithms: Random Forest, Naïve Bayes, J48 Decision Tree and Sequential Minimal Optimization-Support Vector Machines (SMO-SVM) for evaluating SCADA datasets. Two SCADA datasets were used for evaluating the performances of our approach. To improve the classification performances, feature selection using principal component analysis was used to preprocess the datasets. Using prominent classification metrics, the SVM-SMO presented the best overall results with regards to the two datasets. In summary, results showed that supervised learning algorithms were able to classify intrusions targeted against SCADA systems with satisfactory performances.
ISSN: 2377-2697
2023-01-05
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
Sravani, T., Suguna, M.Raja.  2022.  Comparative Analysis Of Crime Hotspot Detection And Prediction Using Convolutional Neural Network Over Support Vector Machine with Engineered Spatial Features Towards Increase in Classifier Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
The major aim of the study is to predict the type of crime that is going to happen based on the crime hotspot detected for the given crime data with engineered spatial features. crime dataset is filtered to have the following 2 crime categories: crime against society, crime against person. Crime hotspots are detected by using the Novel Hierarchical density based Spatial Clustering of Application with Noise (HDBSCAN) Algorithm with the number of clusters optimized using silhouette score. The sample data consists of 501 crime incidents. Future types of crime for the given location are predicted by using the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms (N=5). The accuracy of crime prediction using Support Vector Machine classification algorithm is 94.01% and Convolutional Neural Network algorithm is 79.98% with the significance p-value of 0.033. The Support Vector Machine algorithm is significantly better in accuracy for prediction of type of crime than Convolutional Neural Network (CNN).
2022-05-20
Kjamilji, Artrim, Levi, Albert, Savas, Erkay, Güney, Osman Berke.  2021.  Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We tackle the problem where a server owns a trained Machine Learning (ML) model and a client/user has an unclassified query that he wishes to classify in secure and private fashion using the server’s model. During the process the server learns nothing, while the user learns only his final classification and nothing else. Since several ML classification algorithms, such as deep neural networks, support vector machines-SVM (and hyperplane decisions in general), Logistic Regression, Naïve Bayes, etc., can be expressed in terms of matrix operations, initially we propose novel secure matrix operations as our building blocks. On top of them we build our secure and private ML classification algorithms under strict security and privacy requirements. As our underlying cryptographic primitives are shown to be resilient to quantum computer attacks, our algorithms are also suitable for the post-quantum world. Our theoretical analysis and extensive experimental evaluations show that our secure matrix operations, hence our secure ML algorithms build on top of them as well, outperform the state of the art schemes in terms of computation and communication costs. This makes our algorithms suitable for devices with limited resources that are often found in Industrial IoT (Internet of Things)
2022-03-23
Maheswari, K. Uma, Shobana, G., Bushra, S. Nikkath, Subramanian, Nalini.  2021.  Supervised malware learning in cloud through System calls analysis. 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1–8.
Even if there is a rapid proliferation with the advantages of low cost, the emerging on-demand cloud services have led to an increase in cybercrime activities. Cyber criminals are utilizing cloud services through its distributed nature of infrastructure and create a lot of challenges to detect and investigate the incidents by the security personnel. The tracing of command flow forms a clue for the detection of malicious activity occurring in the system through System Calls Analysis (SCA). As machine learning based approaches are known to automate the work in detecting malwares, simple Support Vector Machine (SVM) based approaches are often reporting low value of accuracy. In this work, a malware classification system proposed with the supervised machine learning of unknown malware instances through Support Vector Machine - Stochastic Gradient Descent (SVM-SGD) algorithm. The performance of the system evaluated on CIC-IDS2017 dataset with labelled attacks. The system is compared with traditional signature based detection model and observed to report less number of false alerts with improved accuracy. The signature based detection gets an accuracy of 86.12%, while the SVM-SGD gets the best accuracy of 99.13%. The model is found to be lightweight but efficient in detecting malware with high degree of accuracy.
2022-03-01
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
2022-02-24
Ali, Wan Noor Hamiza Wan, Mohd, Masnizah, Fauzi, Fariza.  2021.  Cyberbullying Predictive Model: Implementation of Machine Learning Approach. 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP). :65–69.
Machine learning is implemented extensively in various applications. The machine learning algorithms teach computers to do what comes naturally to humans. The objective of this study is to do comparison on the predictive models in cyberbullying detection between the basic machine learning system and the proposed system with the involvement of feature selection technique, resampling and hyperparameter optimization by using two classifiers; Support Vector Classification Linear and Decision Tree. Corpus from ASKfm used to extract word n-grams features before implemented into eight different experiments setup. Evaluation on performance metric shows that Decision Tree gives the best performance when tested using feature selection without resampling and hyperparameter optimization involvement. This shows that the proposed system is better than the basic setting in machine learning.
2022-02-07
Osman, Mohd Zamri, Abidin, Ahmad Firdaus Zainal, Romli, Rahiwan Nazar, Darmawan, Mohd Faaizie.  2021.  Pixel-based Feature for Android Malware Family Classification using Machine Learning Algorithms. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :552–555.
‘Malicious software’ or malware has been a serious threat to the security and privacy of all mobile phone users. Due to the popularity of smartphones, primarily Android, this makes them a very viable target for spreading malware. In the past, many solutions have proved ineffective and have resulted in many false positives. Having the ability to identify and classify malware will help prevent them from spreading and evolving. In this paper, we study the effectiveness of the proposed classification of the malware family using a pixel level as features. This study has implemented well-known machine learning and deep learning classifiers such as K-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree, and Random Forest. A binary file of 25 malware families is converted into a fixed grayscale image. The grayscale images were then extracted transforming the size 100x100 into a single format into 100000 columns. During this phase, none of the columns are removed as to remain the patterns in each malware family. The experimental results show that our approach achieved 92% accuracy in Random Forest, 88% in SVM, 81% in Decision Tree, 80% in k-NN and 56% in Naïve Bayes classifier. Overall, the pixel-based feature also reveals a promising technique for identifying the family of malware with great accuracy, especially using the Random Forest classifier.
2022-01-10
Allagi, Shridhar, Rachh, Rashmi, Anami, Basavaraj.  2021.  A Robust Support Vector Machine Based Auto-Encoder for DoS Attacks Identification in Computer Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–6.
An unprecedented upsurge in the number of cyberattacks and threats is the corollary of ubiquitous internet connectivity. Among a variety of threats and attacks, Denial of Service (DoS) attacks are crucial and conventional mechanisms currently being used for detection/ identification of these attacks are not adequate. The use of real-time and robust mechanisms is the way to handle this. Machine learning-based techniques have been extensively used for this in the recent past. In this paper, a robust mechanism using Support Vector Machine Based Auto-Encoder is proposed for identifying DoS attacks. The proposed technique is tested on the CICIDS dataset and has given 99.32 % accuracy for DoS attacks. To study the effect of the number of features on the performance of the technique, a discriminant component analysis is deployed for feature reduction and independent experiments, namely SVM with 25 features, SVM with 30 features, SVM with 35 features, and PCA-SVM with 25 features, are conducted. From the experiments, it is observed that AE-SVM has performed better than others.
2021-12-20
Baye, Gaspard, Hussain, Fatima, Oracevic, Alma, Hussain, Rasheed, Ahsan Kazmi, S.M..  2021.  API Security in Large Enterprises: Leveraging Machine Learning for Anomaly Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Large enterprises offer thousands of micro-services applications to support their daily business activities by using Application Programming Interfaces (APIs). These applications generate huge amounts of traffic via millions of API calls every day, which is difficult to analyze for detecting any potential abnormal behaviour and application outage. This phenomenon makes Machine Learning (ML) a natural choice to leverage and analyze the API traffic and obtain intelligent predictions. This paper proposes an ML-based technique to detect and classify API traffic based on specific features like bandwidth and number of requests per token. We employ a Support Vector Machine (SVM) as a binary classifier to classify the abnormal API traffic using its linear kernel. Due to the scarcity of the API dataset, we created a synthetic dataset inspired by the real-world API dataset. Then we used the Gaussian distribution outlier detection technique to create a training labeled dataset simulating real-world API logs data which we used to train the SVM classifier. Furthermore, to find a trade-off between accuracy and false positives, we aim at finding the optimal value of the error term (C) of the classifier. The proposed anomaly detection method can be used in a plug and play manner, and fits into the existing micro-service architecture with little adjustments in order to provide accurate results in a fast and reliable way. Our results demonstrate that the proposed method achieves an F1-score of 0.964 in detecting anomalies in API traffic with a 7.3% of false positives rate.
2021-11-29
Joyokusumo, Irfan, Putra, Handika, Fatchurrahman, Rifqi.  2020.  A Machine Learning-Based Strategy For Predicting The Fault Recovery Duration Class In Electric Power Transmission System. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). :252–257.
Energy security program which becomes the part of energy management must ensure the high reliability of the electric power transmission system so that the customer can be served very well. However, there are several problems that can hinder reliability achievement such as the long duration of fault recovery. On the other side, the prediction of fault recovery duration becomes a very challenging task. Because there are still few machine learning-based solution offer this paper proposes a machine learning-based strategy by using Naive-Bayes Classifier (NBC) and Support Vector Machine (SVM) in predicting the fault recovery duration class. The dataset contains 3398 rows of non-temporary-fault type records, six input features (Substation, Asset Type, Fault Category, Outage Start Time, Outage Day, and Outage Month) and single target feature (Fault Recovery Duration). According to the performance test result, those two methods reach around 97-99% of accuracy, average sensitivity, and average specificity. In addition, one of the advantages obtained in field of fault recovery prediction is increasing the accuracy of likelihood level calculation of the long fault recovery time risk.
2018-05-01
Tran, D. T., Waris, M. A., Gabbouj, M., Iosifidis, A..  2017.  Sample-Based Regularization for Support Vector Machine Classification. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). :1–6.

In this paper, we propose a new regularization scheme for the well-known Support Vector Machine (SVM) classifier that operates on the training sample level. The proposed approach is motivated by the fact that Maximum Margin-based classification defines decision functions as a linear combination of the selected training data and, thus, the variations on training sample selection directly affect generalization performance. We show that the exploitation of the proposed regularization scheme is well motivated and intuitive. Experimental results show that the proposed regularization scheme outperforms standard SVM in human action recognition tasks as well as classical recognition problems.