Biblio
Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
We developed a virtualization-based infringement incident response tool for cyber security training system using Cloud. This tool was developed by applying the concept of attack and defense which is the basic of military war game modeling and simulation. The main purpose of this software is to cultivate cyber security experts capable of coping with various situations to minimize the damage in the shortest time when an infringement incident occurred. This tool acquired the invaluable certificate from Korean government agency. This tool shall provide CBT type remote education such as scenario based infringement incident response training, hacking defense practice, and vulnerability measure practice. The tool works in Linux, Window operating system environments, and uses Korean e-government framework and secure coding to construct a situation similar to the actual information system. In the near future, Internet and devices connected to the Internet will be greatly enlarged, and cyber security threats will be diverse and widespread. It is expected that various kinds of hacking will be attempted in an advanced types using artificial intelligence technology. Therefore, we are working on applying the artificial intelligence technology to the current infringement incident response tool to cope with these evolving threats.
Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.