Biblio
Filters: Keyword is attacker capabilities [Clear All Filters]
Constraining Attacker Capabilities Through Actuator Saturation. 2018 Annual American Control Conference (ACC). :986–991.
.
2018. For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools.
Towards Realistic Threat Modeling: Attack Commodification, Irrelevant Vulnerabilities, and Unrealistic Assumptions. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :23–26.
.
2017. Current threat models typically consider all possible ways an attacker can penetrate a system and assign probabilities to each path according to some metric (e.g. time-to-compromise). In this paper we discuss how this view hinders the realness of both technical (e.g. attack graphs) and strategic (e.g. game theory) approaches of current threat modeling, and propose to steer away by looking more carefully at attack characteristics and attacker environment. We use a toy threat model for ICS attacks to show how a realistic view of attack instances can emerge from a simple analysis of attack phases and attacker limitations.