Visible to the public Biblio

Filters: Keyword is edge  [Clear All Filters]
2023-03-31
Soderi, Mirco, Kamath, Vignesh, Breslin, John G..  2022.  A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340
2022-08-26
Ganguli, Mrittika, Ranganath, Sunku, Ravisundar, Subhiksha, Layek, Abhirupa, Ilangovan, Dakshina, Verplanke, Edwin.  2021.  Challenges and Opportunities in Performance Benchmarking of Service Mesh for the Edge. 2021 IEEE International Conference on Edge Computing (EDGE). :78—85.
As Edge deployments move closer towards the end devices, low latency communication among Edge aware applications is one of the key tenants of Edge service offerings. In order to simplify application development, service mesh architectures have emerged as the evolutionary architectural paradigms for taking care of bulk of application communication logic such as health checks, circuit breaking, secure communication, resiliency (among others), thereby decoupling application logic with communication infrastructure. The latency to throughput ratio needs to be measurable for high performant deployments at the Edge. Providing benchmark data for various edge deployments with Bare Metal and virtual machine-based scenarios, this paper digs into architectural complexities of deploying service mesh at edge environment, performance impact across north-south and east-west communications in and out of a service mesh leveraging popular open-source service mesh Istio/Envoy using a simple on-prem Kubernetes cluster. The performance results shared indicate performance impact of Kubernetes network stack with Envoy data plane. Microarchitecture analyses indicate bottlenecks in Linux based stacks from a CPU micro-architecture perspective and quantify the high impact of Linux's Iptables rule matching at scale. We conclude with the challenges in multiple areas of profiling and benchmarking requirement and a call to action for deploying a service mesh, in latency sensitive environments at Edge.
2022-05-09
Zobaed, Sakib M, Salehi, Mohsen Amini, Buyya, Rajkumar.  2021.  SAED: Edge-Based Intelligence for Privacy-Preserving Enterprise Search on the Cloud. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
Cloud-based enterprise search services (e.g., AWS Kendra) have been entrancing big data owners by offering convenient and real-time search solutions to them. However, the problem is that individuals and organizations possessing confidential big data are hesitant to embrace such services due to valid data privacy concerns. In addition, to offer an intelligent search, these services access the user’s search history that further jeopardizes his/her privacy. To overcome the privacy problem, the main idea of this research is to separate the intelligence aspect of the search from its pattern matching aspect. According to this idea, the search intelligence is provided by an on-premises edge tier and the shared cloud tier only serves as an exhaustive pattern matching search utility. We propose Smartness at Edge (SAED mechanism that offers intelligence in the form of semantic and personalized search at the edge tier while maintaining privacy of the search on the cloud tier. At the edge tier, SAED uses a knowledge-based lexical database to expand the query and cover its semantics. SAED personalizes the search via an RNN model that can learn the user’s interest. A word embedding model is used to retrieve documents based on their semantic relevance to the search query. SAED is generic and can be plugged into existing enterprise search systems and enable them to offer intelligent and privacy-preserving search without enforcing any change on them. Evaluation results on two enterprise search systems under real settings and verified by human users demonstrate that SAED can improve the relevancy of the retrieved results by on average ≈24% for plain-text and ≈75% for encrypted generic datasets.
2021-04-27
Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, R., Vuppalapati, J., Kedari, S..  2020.  The Role of Combinatorial Mathematical Optimization and Heuristics to improve Small Farmers to Veterinarian access and to create a Sustainable Food Future for the World. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :214–221.
The Global Demand for agriculture and dairy products is rising. Demand is expected to double by 2050. This will challenge agriculture markets in a way we have not seen before. For instance, unprecedented demand to increase in dairy farm productivity of already shrinking farms, untethered perpetual access to veterinarians by small dairy farms, economic engines of the developing countries, for animal husbandry and, finally, unprecedented need to increase productivity of veterinarians who're already understaffed, over-stressed, resource constrained to meet the current global dairy demands. The lack of innovative solutions to address the challenge would result in a major obstacle to achieve sustainable food future and a colossal roadblock ending economic disparities. The paper proposes a novel innovative data driven framework cropped by data generated using dairy Sensors and by mathematical formulations using Solvers to generate an exclusive veterinarian daily farms prioritized visit list so as to have a greater coverage of the most needed farms performed in-time and improve small farmers access to veterinarians, a precious and highly shortage & stressed resource.
2020-12-11
Zhou, Z., Yang, Y., Cai, Z., Yang, Y., Lin, L..  2019.  Combined Layer GAN for Image Style Transfer*. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM). :1—3.

Image style transfer is an increasingly interesting topic in computer vision where the goal is to map images from one style to another. In this paper, we propose a new framework called Combined Layer GAN as a solution of dealing with image style transfer problem. Specifically, the edge-constraint and color-constraint are proposed and explored in the GAN based image translation method to improve the performance. The motivation of the work is that color and edge are fundamental vision factors for an image, while in the traditional deep network based approach, there is a lack of fine control of these factors in the process of translation and the performance is degraded consequently. Our experiments and evaluations show that our novel method with the edge and color constrains is more stable, and significantly improves the performance compared with the traditional methods.

2020-08-10
Uddin, Mostafa, Nadeem, Tamer, Nukavarapu, Santosh.  2019.  Extreme SDN Framework for IoT and Mobile Applications Flexible Privacy at the Edge. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1–11.
With the current significant penetration of mobile devices (i.e. smartphones and tablets) and the tremendous increase in the number of the corresponding mobile applications, they have become an indispensable part of our lives. Nowadays, there is a significant growth in the number of sensitive applications such as personal health applications, personal financial applications, home monitoring applications, etc. In addition, with the significant growth of Internet-of-Things (IoT) devices, smartphones and the corresponding applications are widely considered as the Internet gateways for these devices. Mobile devices mostly use wireless LANs (WLANs) (i.e., WiFi networks) as the prominent network interface to the Internet. However, due to the broadcast nature of WiFi links, wireless traffics are exposed to any eavesdropping adversary within the WLAN. Despite WiFi encryption, studies show that application usage information could be inferred from the encrypted wireless traffic. The leakage of this sensitive information is very serious issue that will significantly impact users' privacy and security. In addressing this privacy concern, we design and develop a lightweight programmable privacy framework, called PrivacyGuard. PrivacyGuard is inspired by the vision of pushing the Software Defined Network (SDN)-like paradigm all the way to wireless network edge, is designed to support of adopting privacy preserving policies to protect the wireless communication of the sensitive applications. In this paper, we demonstrate and evaluate a prototype of PrivacyGuard framework on Android devices showing the flexibility and efficiency of the framework.
2020-03-30
Narendra, Nanjangud C., Shukla, Anshu, Nayak, Sambit, Jagadish, Asha, Kalkur, Rachana.  2019.  Genoma: Distributed Provenance as a Service for IoT-based Systems. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :755–760.
One of the key aspects of IoT-based systems, which we believe has not been getting the attention it deserves, is provenance. Provenance refers to those actions that record the usage of data in the system, along with the rationale for said usage. Historically, most provenance methods in distributed systems have been tightly coupled with those of the underlying data processing frameworks in such systems. However, in this paper, we argue that IoT provenance requires a different treatment, given the heterogeneity and dynamism of IoT-based systems. In particular, provenance in IoT-based systems should be decoupled as far as possible from the underlying data processing substrates in IoT-based systems.To that end, in this paper, we present Genoma, our ongoing work on a system for provenance-as-a-service in IoT-based systems. By "provenance-as-a-service" we mean the following: distributed provenance across IoT devices, edge and cloud; and agnostic of the underlying data processing substrate. Genoma comprises a set of services that act together to provide useful provenance information to users across the system. We also show how we are realizing Genoma via an implementation prototype built on Apache Atlas and Tinkergraph, through which we are investigating several key research issues in distributed IoT provenance.
2020-02-10
Rashid, Rasber Dh., Majeed, Taban F..  2019.  Edge Based Image Steganography: Problems and Solution. 2019 International Conference on Communications, Signal Processing, and Their Applications (ICCSPA). :1–5.

Steganography means hiding secrete message in cover object in a way that no suspicious from the attackers, the most popular steganography schemes is image steganography. A very common questions that asked in the field are: 1- what is the embedding scheme used?, 2- where is (location) the secrete messages are embedded?, and 3- how the sender will tell the receiver about the locations of the secrete message?. Here in this paper we are deal with and aimed to answer questions number 2 and 3. We used the popular scheme in image steganography which is least significant bits for embedding in edges positions in color images. After we separate the color images into its components Red, Green, and Blue, then we used one of the components as an index to find the edges, while other one or two components used for embedding purpose. Using this technique we will guarantee the same number and positions of edges before and after embedding scheme, therefore we are guaranteed extracting the secrete message as it's without any loss of secrete messages bits.

2018-05-09
Shafagh, Hossein, Burkhalter, Lukas, Hithnawi, Anwar, Duquennoy, Simon.  2017.  Towards Blockchain-based Auditable Storage and Sharing of IoT Data. Proceedings of the 2017 on Cloud Computing Security Workshop. :45–50.
Today the cloud plays a central role in storing, processing, and distributing data. Despite contributing to the rapid development of IoT applications, the current IoT cloud-centric architecture has led into a myriad of isolated data silos that hinders the full potential of holistic data-driven analytics within the IoT. In this paper, we present a blockchain-based design for the IoT that brings a distributed access control and data management. We depart from the current trust model that delegates access control of our data to a centralized trusted authority and instead empower the users with data ownership. Our design is tailored for IoT data streams and enables secure data sharing. We enable a secure and resilient access control management, by utilizing the blockchain as an auditable and distributed access control layer to the storage layer. We facilitate the storage of time-series IoT data at the edge of the network via a locality-aware decentralized storage system that is managed with the blockchain technology. Our system is agnostic of the physical storage nodes and supports as well utilization of cloud storage resources as storage nodes.