Biblio
The failure prediction method of virtual machines (VM) guarantees reliability to cloud platforms. However, the uncertainty of VM security state will affect the reliability and task processing capabilities of the entire cloud platform. In this study, a failure prediction method of VM based on AdaBoost-Hidden Markov Model was proposed to improve the reliability of VMs and overall performance of cloud platforms. This method analyzed the deep relationship between the observation state and the hidden state of the VM through the hidden Markov model, proved the influence of the AdaBoost algorithm on the hidden Markov model (HMM), and realized the prediction of the VM failure state. Results show that the proposed method adapts to the complex dynamic cloud platform environment, can effectively predict the failure state of VMs, and improve the predictive ability of VM security state.
Current testing for Deep Neural Networks (DNNs) focuses on quantity of test cases but ignores diversity. To the best of our knowledge, DeepXplore is the first white-box framework for Deep Learning testing by triggering differential behaviors between multiple DNNs and increasing neuron coverage to improve diversity. Since it is based on multiple DNNs facing problems that (1) the framework is not friendly to a single DNN, (2) if incorrect predictions made by all DNNs simultaneously, DeepXplore cannot generate test cases. This paper presents Test4Deep, a white-box testing framework based on a single DNN. Test4Deep avoids mistakes of multiple DNNs by inducing inconsistencies between predicted labels of original inputs and that of generated test inputs. Meanwhile, Test4Deep improves neuron coverage to capture more diversity by attempting to activate more inactivated neurons. The proposed method was evaluated on three popular datasets with nine DNNs. Compared to DeepXplore, Test4Deep produced average 4.59% (maximum 10.49%) more test cases that all found errors and faults of DNNs. These test cases got 19.57% more diversity increment and 25.88% increment of neuron coverage. Test4Deep can further be used to improve the accuracy of DNNs by average up to 5.72% (maximum 7.0%).
Recently Vehicular Cloud Computing (VCC) has become an attractive solution that support vehicle's computing and storing service requests. This computing paradigm insures a reduced energy consumption and low traffic congestion. Additionally, VCC has emerged as a promising technology that provides a virtual platform for processing data using vehicles as infrastructures or centralized data servers. However, vehicles are deployed in open environments where they are vulnerable to various types of attacks. Furthermore, traditional cryptographic algorithms failed in insuring security once their keys compromised. In order to insure a secure vehicular platform, we introduce in this paper a new decoy technology DT and user behavior profiling (UBP) as an alternative solution to overcome data security, privacy and trust in vehicular cloud servers using a fog computing architecture. In the case of a malicious behavior, our mechanism shows a high efficiency by delivering decoy files in such a way making the intruder unable to differentiate between the original and decoy file.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.
With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.
Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.
Although various techniques have been proposed to generate adversarial samples for white-box attacks on text, little attention has been paid to a black-box attack, which is a more realistic scenario. In this paper, we present a novel algorithm, DeepWordBug, to effectively generate small text perturbations in a black-box setting that forces a deep-learning classifier to misclassify a text input. We develop novel scoring strategies to find the most important words to modify such that the deep classifier makes a wrong prediction. Simple character-level transformations are applied to the highest-ranked words in order to minimize the edit distance of the perturbation. We evaluated DeepWordBug on two real-world text datasets: Enron spam emails and IMDB movie reviews. Our experimental results indicate that DeepWordBug can reduce the classification accuracy from 99% to 40% on Enron and from 87% to 26% on IMDB. Our results strongly demonstrate that the generated adversarial sequences from a deep-learning model can similarly evade other deep models.
As a new research hotspot in the field of artificial intelligence, deep reinforcement learning (DRL) has achieved certain success in various fields such as robot control, computer vision, natural language processing and so on. At the same time, the possibility of its application being attacked and whether it have a strong resistance to strike has also become a hot topic in recent years. Therefore, we select the representative Deep Q Network (DQN) algorithm in deep reinforcement learning, and use the robotic automatic pathfinding application as a countermeasure application scenario for the first time, and attack DQN algorithm against the vulnerability of the adversarial samples. In this paper, we first use DQN to find the optimal path, and analyze the rules of DQN pathfinding. Then, we propose a method that can effectively find vulnerable points towards White-Box Q table variation in DQN pathfinding training. Finally, we build a simulation environment as a basic experimental platform to test our method, through multiple experiments, we can successfully find the adversarial examples and the experimental results show that the supervised method we proposed is effective.
Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.
Reliable operation of electrical power systems in the presence of multiple critical N - k contingencies is an important challenge for the system operators. Identifying all the possible N - k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N - k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N - k contingencies. The algorithms are able to capture all the possible critical N - k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.
With crimes on the rise all around the world, video surveillance is becoming more important day by day. Due to the lack of human resources to monitor this increasing number of cameras manually, new computer vision algorithms to perform lower and higher level tasks are being developed. We have developed a new method incorporating the most acclaimed Histograms of Oriented Gradients, the theory of Visual Saliency and the saliency prediction model Deep Multi-Level Network to detect human beings in video sequences. Furthermore, we implemented the k - Means algorithm to cluster the HOG feature vectors of the positively detected windows and determined the path followed by a person in the video. We achieved a detection precision of 83.11% and a recall of 41.27%. We obtained these results 76.866 times faster than classification on normal images.
The rapid development of cloud computing has resulted in the emergence of numerous web services on the Internet. Selecting a suitable cloud service is becoming a major problem for users especially non-professionals. Quality of Service (QoS) is considered to be the criterion for judging web services. There are several Collaborative Filtering (CF)-based QoS prediction methods proposed in recent years. QoS values among different users may vary largely due to the network and geographical location. Moreover, QoS data provided by untrusted users will definitely affect the prediction accuracy. However, most existing methods seldom take both facts into consideration. In this paper, we present a trust-aware and location-based approach for web service QoS prediction. A trust value for each user is evaluated before the similarity calculation and the location is taken into account in similar neighbors selecting. A series of experiments are performed based on a realworld QoS dataset including 339 service users and 5,825 services. The experimental analysis shows that the accuracy of our method is much higher than other CF-based methods.
Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.