Visible to the public Biblio

Filters: Keyword is controller area network  [Clear All Filters]
2023-05-12
Desta, Araya Kibrom, Ohira, Shuji, Arai, Ismail, Fujikawa, Kazutoshi.  2022.  U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller Area Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1481–1488.
The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
ISSN: 0730-3157
Zhu, Lu, Wei, Yehua, Jiang, Haoran, Long, Jing.  2022.  CAN FD Message Authentication Enhances Parallel in-vehicle Applications Security. 2022 2nd International Conference on Intelligent Technology and Embedded Systems (ICITES). :155–160.
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
Hariharan, Sheela, Papadopoulos, Alessandro V., Nolte, Thomas.  2022.  On In-Vehicle Network Security Testing Methodologies in Construction Machinery. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In construction machinery, connectivity delivers higher advantages in terms of higher productivity, lower costs, and most importantly safer work environment. As the machinery grows more dependent on internet-connected technologies, data security and product cybersecurity become more critical than ever. These machines have more cyber risks compared to other automotive segments since there are more complexities in software, larger after-market options, use more standardized SAE J1939 protocol, and connectivity through long-distance wireless communication channels (LTE interfaces for fleet management systems). Construction machinery also operates throughout the day, which means connected and monitored endlessly. Till today, construction machinery manufacturers are investigating the product cybersecurity challenges in threat monitoring, security testing, and establishing security governance and policies. There are limited security testing methodologies on SAE J1939 CAN protocols. There are several testing frameworks proposed for fuzz testing CAN networks according to [1]. This paper proposes security testing methods (Fuzzing, Pen testing) for in-vehicle communication protocols in construction machinery.

Croitoru, Adrian-Florin, Stîngă, Florin, Marian, Marius.  2022.  A Case Study for Designing a Secure Communication Protocol over a Controller Area Network. 2022 26th International Conference on System Theory, Control and Computing (ICSTCC). :47–51.
This paper presents a case study for designing and implementing a secure communication protocol over a Controller Area Network (CAN). The CAN based protocol uses a hybrid encryption method on a relatively simple hardware / software environment. Moreover, the blockchain technology is proposed as a working solution to provide an extra secure level of the proposed system.
ISSN: 2372-1618
Lakshmi, Swathy, Kumar, Renjith H.  2022.  Secure Communication between Arduinos using Controller Area Network(CAN) Bus. 2022 IEEE International Power and Renewable Energy Conference (IPRECON). :1–6.
Present-day vehicles have numerous Electronic Control Units (ECUs) and they communicate with each other over a network known as the Controller Area Network(CAN) bus. In this way, the CAN bus is a fundamental component of intra-vehicle communication. The CAN bus was designed without focusing on communication security and in this way it is vulnerable to many cyber attacks. As the vehicles are always connected to the Internet, the CAN bus is remotely accessible and could be hacked. To secure the communication between ECUs and defend against these cyber attacks, we apply a Hash Message Authentication Code(HMAC) to automotive data and demonstrate the CAN bus communication between two ECUs using Arduino UNO and MCP2515 CAN bus module.
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
Buscemi, Alessio, Turcanu, Ion, Castignani, German, Engel, Thomas.  2022.  On Frame Fingerprinting and Controller Area Networks Security in Connected Vehicles. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :821–826.
Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.
ISSN: 2331-9860
Matsubayashi, Masaru, Koyama, Takuma, Tanaka, Masashi, Okano, Yasushi, Miyajima, Asami.  2022.  Message Source Identification in Controller Area Network by Utilizing Diagnostic Communications and an Intrusion Detection System. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–6.
International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
ISSN: 2577-2465
Glocker, Tobias, Mantere, Timo.  2022.  Implementation of an Intelligent Caravan Monitoring System Using the Controller Area Network. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–6.
Nowadays, safety systems are an important feature for modern vehicles. Many accidents would have been occurred without them. In comparison with older vehicles, modern vehicles have a much better crumple zone, more airbags, a better braking system, as well as a much better and safer driving behaviour. Although, the vehicles safety systems are working well in these days, there is still space for improvement and for adding new security features. This paper describes the implementation of an Intelligent Caravan Monitoring System (ICMS) using the Controller Area Network (CAN), for the communication between the vehicle’s electronic system and the trailer’s electronic system. Furthermore, a comparison between the communication technology of this paper and a previous published paper will be made. The new system is faster, more flexible and more energy efficient.
Derhab, Abdelwahid.  2022.  Keynote Speaker 6: Intrusion detection systems using machine learning for the security of autonomous vehicles. 2022 15th International Conference on Security of Information and Networks (SIN). :1–1.
The emergence of smart cars has revolutionized the automotive industry. Today's vehicles are equipped with different types of electronic control units (ECUs) that enable autonomous functionalities like self-driving, self-parking, lane keeping, and collision avoidance. The ECUs are connected to each other through an in-vehicle network, named Controller Area Network. In this talk, we will present the different cyber attacks that target autonomous vehicles and explain how an intrusion detection system (IDS) using machine learning can play a role in securing the Controller Area Network. We will also discuss the main research contributions for the security of autonomous vehicles. Specifically, we will describe our IDS, named Histogram-based Intrusion Detection and Filtering framework. Next, we will talk about the machine learning explainability issue that limits the acceptability of machine learning in autonomous vehicles, and how it can be addressed using our novel intrusion detection system based on rule extraction methods from Deep Neural Networks.
2022-12-06
Tamburello, Marialaura, Caruso, Giuseppe, Giordano, Stefano, Adami, Davide, Ojo, Mike.  2022.  Edge-AI Platform for Realtime Wildlife Repelling. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). :80-84.

In this paper, we present the architecture of a Smart Industry inspired platform designed for Agriculture 4.0 applications and, specifically, to optimize an ecosystem of SW and HW components for animal repelling. The platform implementation aims to obtain reliability and energy efficiency in a system aimed to detect, recognize, identify, and repel wildlife by generating specific ultrasound signals. The wireless sensor network is composed of OpenMote hardware devices coordinated on a mesh network based on the 6LoWPAN protocol, and connected to an FPGA-based board. The system, activated when an animal is detected, elaborates the data received from a video camera connected to FPGA-based hardware devices and then activates different ultrasonic jammers belonging to the OpenMotes network devices. This way, in real-time wildlife will be progressively moved away from the field to be preserved by the activation of specific ultrasonic generators. To monitor the daily behavior of the wildlife, the ecosystem is expanded using a time series database running on a Cloud platform.

2022-08-26
Hounsinou, Sena, Stidd, Mark, Ezeobi, Uchenna, Olufowobi, Habeeb, Nasri, Mitra, Bloom, Gedare.  2021.  Vulnerability of Controller Area Network to Schedule-Based Attacks. 2021 IEEE Real-Time Systems Symposium (RTSS). :495–507.
The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker's injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedule-based attacks.
Teo, Yu Xian, Chen, Jiaqi, Ash, Neil, Ruddle, Alastair R., Martin, Anthony J. M..  2021.  Forensic Analysis of Automotive Controller Area Network Emissions for Problem Resolution. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. :619–623.
Electromagnetic emissions associated with the transmission of automotive controller area network (CAN) messages within a passenger car have been analysed and used to reconstruct the original CAN messages. Concurrent monitoring of the CAN traffic via a wired connection to the vehicle OBD-II port was used to validate the effectiveness of the reconstruction process. These results confirm the feasibility of reconstructing in-vehicle network data for forensic purposes, without the need for wired access, at distances of up to 1 m from the vehicle by using magnetic field measurements, and up to 3 m using electric field measurements. This capability has applications in the identification and resolution of EMI issues in vehicle data network, as well as possible implications for automotive cybersecurity.
2021-09-07
Young, Clinton, Svoboda, Jordan, Zambreno, Joseph.  2020.  Towards Reverse Engineering Controller Area Network Messages Using Machine Learning. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1–6.
The automotive Controller Area Network (CAN) allows Electronic Control Units (ECUs) to communicate with each other and control various vehicular functions such as engine and braking control. Consequently CAN and ECUs are high priority targets for hackers. As CAN implementation details are held as proprietary information by vehicle manufacturers, it can be challenging to decode and correlate CAN messages to specific vehicle operations. To understand the precise meanings of CAN messages, reverse engineering techniques that are time-consuming, manually intensive, and require a physical vehicle are typically used. This work aims to address the process of reverse engineering CAN messages for their functionality by creating a machine learning classifier that analyzes messages and determines their relationship to other messages and vehicular functions. Our work examines CAN traffic of different vehicles and standards to show that it can be applied to a wide arrangement of vehicles. The results show that the function of CAN messages can be determined without the need to manually reverse engineer a physical vehicle.
Sami, Muhammad, Ibarra, Matthew, Esparza, Anamaria C., Al-Jufout, Saleh, Aliasgari, Mehrdad, Mozumdar, Mohammad.  2020.  Rapid, Multi-vehicle and Feed-forward Neural Network based Intrusion Detection System for Controller Area Network Bus. 2020 IEEE Green Energy and Smart Systems Conference (IGESSC). :1–6.
In this paper, an Intrusion Detection System (IDS) in the Controller Area Network (CAN) bus of modern vehicles has been proposed. NESLIDS is an anomaly detection algorithm based on the supervised Deep Neural Network (DNN) architecture that is designed to counter three critical attack categories: Denial-of-service (DoS), fuzzy, and impersonation attacks. Our research scope included modifying DNN parameters, e.g. number of hidden layer neurons, batch size, and activation functions according to how well it maximized detection accuracy and minimized the false positive rate (FPR) for these attacks. Our methodology consisted of collecting CAN Bus data from online and in real-time, injecting attack data after data collection, preprocessing in Python, training the DNN, and testing the model with different datasets. Results show that the proposed IDS effectively detects all attack types for both types of datasets. NESLIDS outperforms existing approaches in terms of accuracy, scalability, and low false alarm rates.
Schell, Oleg, Kneib, Marcel.  2020.  VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :225–232.
The Controller Area Network (CAN), a broadcasting bus for intra-vehicle communication, does not provide any security mechanisms, although it is implemented in almost every vehicle. Attackers can exploit this issue, transmit malicious messages unnoticeably and cause severe harm. As the utilization of Message Authentication Codes (MACs) is only possible to a limited extent in resource-constrained systems, the focus is put on the development of Intrusion Detection Systems (IDSs). Due to their simple idea of operation, current developments are increasingly utilizing physical signal properties like voltages to realize these systems. Although the feasibility for CAN-based networks could be demonstrated, the least approaches consider the constrained resource-availability of vehicular hardware. To close this gap, we present Voltage-Based Lightweight Intrusion Detection (VALID), which provides physics-based intrusion detection with low resource requirements. By utilizing solely the individual voltage levels on the network during communication, the system detects unauthorized message transmissions without any sophisticated sampling approaches and feature calculations. Having performed evaluations on data from two real vehicles, we show that VALID is not only able to detect intrusions with an accuracy of 99.54 %, but additionally is capable of identifying the attack source reliably. These properties make VALID one of the most lightweight intrusion detection approaches that is ready-to-use, as it can be easily implemented on hardware already installed in vehicles and does not require any further components. Additionally, this allows existing platforms to be retrofitted and vehicular security systems to be improved and extended.
Sunny, Jerin, Sankaran, Sriram, Saraswat, Vishal.  2020.  A Hybrid Approach for Fast Anomaly Detection in Controller Area Networks. 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Recent advancements in the field of in-vehicle network and wireless communication, has been steadily progressing. Also, the advent of technologies such as Vehicular Adhoc Networks (VANET) and Intelligent Transportation System (ITS), has transformed modern automobiles into a sophisticated cyber-physical system rather than just a isolated mechanical device. Modern automobiles rely on many electronic control units communicating over the Controller Area Network (CAN) bus. Although protecting the car's external interfaces is an vital part of preventing attacks, detecting malicious activity on the CAN bus is an effective second line of defense against attacks. This paper proposes a hybrid anomaly detection system for CAN bus based on patterns of recurring messages and time interval of messages. The proposed method does not require modifications in CAN bus. The proposed system is evaluated on real CAN bus traffic with simulated attack scenarios. Results obtained show that our proposed system achieved a good detection rate with fast response times.
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
2021-01-25
Marasco, E. O., Quaglia, F..  2020.  AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
2020-07-20
Hayward, Jake, Tomlinson, Andrew, Bryans, Jeremy.  2019.  Adding Cyberattacks To An Industry-Leading CAN Simulator. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :9–16.
Recent years have seen an increase in the data usage in cars, particularly as they become more autonomous and connected. With the rise in data use have come concerns about automotive cyber-security. An in-vehicle network shown to be particularly vulnerable is the Controller Area Network (CAN), which is the communication bus used by the car's safety critical and performance critical components. Cyber attacks on the CAN have been demonstrated, leading to research to develop attack detection and attack prevention systems. Such research requires representative attack demonstrations and data for testing. Obtaining this data is problematical due to the expense, danger and impracticality of using real cars on roads or tracks for example attacks. Whilst CAN simulators are available, these tend to be configured for testing conformance and functionality, rather than analysing security and cyber vulnerability. We therefore adapt a leading, industry-standard, CAN simulator to incorporate a core set of cyber attacks that are representative of those proposed by other researchers. Our adaptation allows the user to configure the attacks, and can be added easily to the free version of the simulator. Here we describe the simulator and, after reviewing the attacks that have been demonstrated and discussing their commonalities, we outline the attacks that we have incorporated into the simulator.
Fowler, Daniel S., Bryans, Jeremy, Cheah, Madeline, Wooderson, Paul, Shaikh, Siraj A..  2019.  A Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1–8.
There is a need for new tools and techniques to aid automotive engineers performing cybersecurity testing on connected car systems. This is in order to support the principle of secure-by-design. Our research has produced a method to construct useful automotive security tooling and tests. It has been used to implement Controller Area Network (CAN) fuzz testing (a dynamic security test) via a prototype CAN fuzzer. The black-box fuzz testing of a laboratory vehicle's display ECU demonstrates the value of a fuzzer in the automotive field, revealing bugs in the ECU software, and weaknesses in the vehicle's systems design.
Castiglione, Arcangelo, Palmieri, Francesco, Colace, Francesco, Lombardi, Marco, Santaniello, Domenico.  2019.  Lightweight Ciphers in Automotive Networks: A Preliminary Approach. 2019 4th International Conference on System Reliability and Safety (ICSRS). :142–147.
Nowadays, the growing need to connect modern vehicles through computer networks leads to increased risks of cyberattacks. The internal network, which governs the several electronic components of a vehicle, is becoming increasingly overexposed to external attacks. The Controller Area Network (CAN) protocol, used to interconnect those devices is the key point of the internal network of modern vehicles. Therefore, securing such protocol is crucial to ensure a safe driving experience. However, the CAN is a standard that has undergone little changes since it was introduced in 1983. More precisely, in an attempt to reduce latency, the transfer of information remains unencrypted, which today represents a weak point in the protocol. Hence, the need to protect communications, without introducing low-level alterations, while preserving the performance characteristics of the protocol. In this work, we investigate the possibility of using symmetric encryption algorithms for securing messages exchanged by CAN protocol. In particular, we evaluate the using of lightweight ciphers to secure CAN-level communication. Such ciphers represent a reliable solution on hardware-constrained devices, such as microcontrollers.
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
Tanksale, Vinayak.  2019.  Intrusion Detection For Controller Area Network Using Support Vector Machines. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :121–126.
Controller Area Network is the most widely adopted communication standard in automobiles. The CAN protocol is robust and is designed to minimize overhead. The light-weight nature of this protocol implies that it can't efficiently process secure communication. With the exponential increase in automobile communications, there is an urgent need for efficient and effective security countermeasures. We propose a support vector machine based intrusion detection system that is able to detect anomalous behavior with high accuracy. We outline a process for parameter selection and feature vector selection. We identify strengths and weaknesses of our system and propose to extend our work for time-series based data.
2019-12-16
Kneib, Marcel, Huth, Christopher.  2018.  Scission: Signal Characteristic-Based Sender Identification and Intrusion Detection in Automotive Networks. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :787–800.
Increased connectivity increases the attack vector. This also applies to connected vehicles in which vulnerabilities not only threaten digital values but also humans and the environment. Typically, attackers try to exploit the Controller Area Network (CAN) bus, which is the most widely used standard for internal vehicle communication. Once an Electronic Control Unit (ECU) connected to the CAN bus is compromised, attackers can manipulate messages at will. The missing sender authentication by design of the CAN bus enables adversarial access to vehicle functions with severe consequences. In order to address this problem, we propose Scission, an Intrusion Detection System (IDS) which uses fingerprints extracted from CAN frames, enabling the identification of sending ECUs. Scission utilizes physical characteristics from analog values of CAN frames to assess whether it was sent by the legitimate ECU. In addition, to detect comprised ECUs, the proposed system is able to recognize attacks from unmonitored and additional devices. We show that Scission is able to identify the sender with an average probability of 99.85%, during the evaluation on two series production cars and a prototype setup. Due to the robust design of the system, the evaluation shows that all false positives were prevented. Compared to previous approaches, we have significantly reduced hardware costs and increased identification rates, which enables a broad application of this technology.