Biblio
In construction machinery, connectivity delivers higher advantages in terms of higher productivity, lower costs, and most importantly safer work environment. As the machinery grows more dependent on internet-connected technologies, data security and product cybersecurity become more critical than ever. These machines have more cyber risks compared to other automotive segments since there are more complexities in software, larger after-market options, use more standardized SAE J1939 protocol, and connectivity through long-distance wireless communication channels (LTE interfaces for fleet management systems). Construction machinery also operates throughout the day, which means connected and monitored endlessly. Till today, construction machinery manufacturers are investigating the product cybersecurity challenges in threat monitoring, security testing, and establishing security governance and policies. There are limited security testing methodologies on SAE J1939 CAN protocols. There are several testing frameworks proposed for fuzz testing CAN networks according to [1]. This paper proposes security testing methods (Fuzzing, Pen testing) for in-vehicle communication protocols in construction machinery.
In this paper, we present the architecture of a Smart Industry inspired platform designed for Agriculture 4.0 applications and, specifically, to optimize an ecosystem of SW and HW components for animal repelling. The platform implementation aims to obtain reliability and energy efficiency in a system aimed to detect, recognize, identify, and repel wildlife by generating specific ultrasound signals. The wireless sensor network is composed of OpenMote hardware devices coordinated on a mesh network based on the 6LoWPAN protocol, and connected to an FPGA-based board. The system, activated when an animal is detected, elaborates the data received from a video camera connected to FPGA-based hardware devices and then activates different ultrasonic jammers belonging to the OpenMotes network devices. This way, in real-time wildlife will be progressively moved away from the field to be preserved by the activation of specific ultrasonic generators. To monitor the daily behavior of the wildlife, the ecosystem is expanded using a time series database running on a Cloud platform.