Wang, Xi-Kun, Sun, Xin.
2021.
CP-ABE with Efficient Revocation Based on the KEK Tree in Data Outsourcing System. 2021 40th Chinese Control Conference (CCC). :8610–8615.
CP-ABE (ciphertext-policy attribute-based encryption) is a promising encryption scheme. In this paper, a highly expressive revocable scheme based on the key encryption keys (KEK) tree is proposed. In this method, the cloud server realizes the cancellation of attribute-level users and effectively reduces the computational burden of the data owner and attribute authority. This scheme embeds a unique random value associated with the user in the attribute group keys. The attribute group keys of each user are different, and it is impossible to initiate a collusion attack. Computing outsourcing makes most of the decryption work done by the cloud server, and the data user only need to perform an exponential operation; in terms of security, the security proof is completed under the standard model based on simple assumptions. Under the premise of ensuring security, the scheme in this paper has the functions of revocation and traceability, and the speed of decryption calculation is also improved.
Hwang, Yong-Woon, Lee, Im-Yeong.
2021.
A Study on CP-ABE Based Data Sharing System That Provides Signature-Based Verifiable Outsourcing. 2021 International Conference on Advanced Enterprise Information System (AEIS). :1–5.
Recently, with the development of the cloud environment, users can store their data or share it with other users. However, various security threats can occur in data sharing systems in the cloud environment. To solve this, data sharing systems and access control methods using the CP-ABE method are being studied, but the following problems may occur. First, in an outsourcing server that supports computation, it is not possible to prove that the computed result is a properly computed result when performing the partial decryption process of the ciphertext. Therefore, the user needs to verify the message obtained by performing the decryption process, and verify that the data is uploaded by the data owner through verification. As another problem, because the data owner encrypts data with attribute-based encryption, the number of attributes included in the access structure increases. This increases the size of the ciphertext, which can waste space in cloud storage. Therefore, a ciphertext of a constant size must be output regardless of the number of attributes when generating the ciphertext. In this paper, we proposes a CP-ABE based data sharing system that provides signature-based verifiable outsourcing. It aims at a system that allows multiple users to share data safely and efficiently in a cloud environment by satisfying verifiable outsourcing and constant-sized ciphertext output among various security requirements required by CP-ABE.