Visible to the public Biblio

Filters: Keyword is data transmission security  [Clear All Filters]
2020-12-07
Furtak, J., Zieliński, Z., Chudzikiewicz, J..  2019.  Security Domain for the Sensor Nodes with Strong Authentication. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.
Nowadays interest in IoT solutions is growing. A significant barrier to the use of these solutions in military applications is to ensure the security of data transmission and authentication of data sources and recipients of the data. Developing an efficient solution to these problems requires finding a compromise between the facts that the sensors often are mobile, use wireless communication, usually have the small processing power and have little energy resources. The article presents the security domain designated for cooperating mobile sensor nodes. The domain has the following features: the strong authentication of each domain member, cryptographic protection of data exchange in the data link layer and protection of data stored in the sensor node resources. The domain is also prepared to perform diagnostic procedures and to exchange sensory data with other domains securely. At each node, the Trusted Platform Module (TPM) is used to support these procedures.
2020-09-08
Meenu, M, Raajan, N.R., Greeta, S.  2019.  Secured Transmission of Data Using Chaos in Wcdma Network. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
Spreading code assumes an indispensable work in WCDMA system. Every individual client in a cell is isolated by an exceptional spread code. PN grouping are commonly utilized in WCDMA framework. For example, Walsh codes or gold codes as spread code. Data received from WCDMA are transmitted using chaotic signal and that signal is generated by using logistic map. It is unsuitable to be utilized as spreading sequence. Using a threshold function the chaos signal is changed in the form of binary sequence. Consequently, QPSK modulation techniques is analyzed in W-CDMA downlink over Additive white Gaussian noise channel (AWGN) and Rayleigh multipath fading channel. The activity was assessed with the assistance of BER contrary to SNR utilizing parameters indicating the BER in low to high in SNR.
2019-11-25
Lu, Xinjin, Lei, Jing, Li, Wei, Pan, Zhipeng.  2018.  A Delayed Feedback Chaotic Encryption Algorithm Based on Polar Codes. 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE). :27–31.
With the development of wireless communication, the reliability and the security of data is very significant for the wireless communication. In this paper, a delayed feedback chaotic encryption algorithm based on polar codes is proposed. In order to protect encoding information, we make uses of wireless channels to extract binary keys. The extracted binary keys will be used as the initial value of chaotic system to produce chaotic sequences. Besides, we use the chain effects of delayed feedback, which increase the difficulty of cryptanalysis. The results of the theoretical analyses and simulations show that the algorithm could guarantee the security of data transmission without affecting reliability.
2019-01-21
Elmahdi, E., Yoo, S., Sharshembiev, K..  2018.  Securing data forwarding against blackhole attacks in mobile ad hoc networks. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :463–467.

A mobile ad hoc network (MANET) is vulnerable to many types of attacks. Thus, security has turned out to be an important factor to facilitate secured communication between mobile nodes in a wireless environment. In this paper we propose a new approach to provide reliable and secure data transmission in MANETs under possible blackhole attacks based on ad hoc on-demand multipath distance vector (AOMDV) protocol and homomorphic encryption scheme for security. The performance of the proposed scheme is stable but that of AOMDV is found to be degrading with the intrusion of malicious nodes in the network. Simulation results show the improvement of packet delivery ratio and network throughput in the presence of blackhole nodes in our proposed scheme.

2018-05-24
Rajagopalan, S., Rethinam, S., Deepika, A. N., Priyadarshini, A., Jyothirmai, M., Rengarajan, A..  2017.  Design of Boolean Chaotic Oscillator Using CMOS Technology for True Random Number Generation. 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

True random numbers have a fair role in modern digital transactions. In order to achieve secured authentication, true random numbers are generated as security keys which are highly unpredictable and non-repetitive. True random number generators are used mainly in the field of cryptography to generate random cryptographic keys for secure data transmission. The proposed work aims at the generation of true random numbers based on CMOS Boolean Chaotic Oscillator. As a part of this work, ASIC approach of CMOS Boolean Chaotic Oscillator is modelled and simulated using Cadence Virtuoso tool based on 45nm CMOS technology. Besides, prototype model has been implemented with circuit components and analysed using NI ELVIS platform. The strength of the generated random numbers was ensured by NIST (National Institute of Standards and Technology) Test Suite and ASIC approach was validated through various parameters by performing various analyses such as frequency, delay and power.