Visible to the public Biblio

Filters: Keyword is certification authorities  [Clear All Filters]
2019-10-23
Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

2018-05-30
Liu, C., Feng, Y., Fan, M., Wang, G..  2008.  PKI Mesh Trust Model Based on Trusted Computing. 2008 The 9th International Conference for Young Computer Scientists. :1401–1405.

Different organizations or countries maybe adopt different PKI trust model in real applications. On a large scale, all certification authorities (CA) and end entities construct a huge mesh network. PKI trust model exhibits unstructured mesh network as a whole. However, mesh trust model worsens computational complexity in certification path processing when the number of PKI domains increases. This paper proposes an enhanced mesh trust model for PKI. Keys generation and signature are fulfilled in Trusted Platform Module (TPM) for higher security level. An algorithm is suggested to improve the performance of certification path processing in this model. This trust model is less complex but more efficient and robust than the existing PKI trust models.