Biblio
Due to the unavailability of signatures for previously unknown malware, non-signature malware detection schemes typically rely on analyzing program behavior. Prior behavior based non-signature malware detection schemes are either easily evadable by obfuscation or are very inefficient in terms of storage space and detection time. In this paper, we propose GZero, a graph theoretic approach fast and accurate non-signature malware detection at end hosts. GZero it is effective while being efficient in terms of both storage space and detection time. We conducted experiments on a large set of both benign software and malware. Our results show that GZero achieves more than 99% detection rate and a false positive rate of less than 1%, with less than 1 second of average scan time per program and is relatively robust to obfuscation attacks. Due to its low overheads, GZero can complement existing malware detection solutions at end hosts.
Code signing which at present is the only methodology of trusting a code that is distributed to others. It heavily relies on the security of the software providers private key. Attackers employ targeted attacks on the code signing infrastructure for stealing the signing keys which are used later for distributing malware in disguise of genuine software. Differentiating a malware from a benign software becomes extremely difficult once it gets signed by a trusted software providers private key as the operating systems implicitly trusts this signed code. In this paper, we analyze the growing menace of signed malware by examining several real world incidents and present a threat model for the current code signing infrastructure. We also propose a novel solution that prevents this issue of malicious code signing by requiring additional verification of the executable. We also present the serious threat it poses and it consequences. To our knowledge this is the first time this specific issue of Malicious code signing has been thoroughly studied and an implementable solution is proposed.