Visible to the public Biblio

Filters: Keyword is Encrypted database  [Clear All Filters]
2021-04-27
Yoshino, M., Naganuma, K., Kunihiro, N., Sato, H..  2020.  Practical Query-based Order Revealing Encryption from Symmetric Searchable Encryption. 2020 15th Asia Joint Conference on Information Security (AsiaJCIS). :16–23.
In the 2010s, there has been significant interest in developing methods, such as searchable encryption for exact matching and order-preserving/-revealing encryption for range search, to perform search on encrypted data. However, the symmetric searchable encryption method has been steadily used not only in databases but also in full-text search engine because of its quick performance and high security against intruders and system administrators. Contrarily, order-preserving/-revealing encryption is rarely employed in practice: almost all related schemes suffer from inference attacks, and some schemes are secure but impractical because they require exponential storage size or communication complexity. In this study, we define the new security models based on order-revealing encryption (ORE) for performing range search, and explain that previous techniques are not satisfied with our weak security model. We present two generic constructions of ORE using the searchable encryption method. Our constructions offer practical performance such as the storage size of O(nb) and computation complexity of O(n2), where the plaintext space is a set of n-bit binaries and b denotes the block size of the ciphertext generated via searchable encryption. The first construction gives the comparison result to the server, and the security considers a weak security model. The second construction hides the comparison result from the server, and only the secret-key owner can recover it.
2020-01-21
Li, Yuan, Wang, Hongbing, Zhao, Yunlei.  2019.  Delegatable Order-Revealing Encryption. Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. :134–147.
Order-revealing encryption (ORE) is a basic cryptographic primitive for ciphertext comparisons based on the order relationship of plaintexts while maintaining the privacy of them. In the data era we are experiencing, cross-dataset transactions become ubiquitous in practice. However, almost all the previous ORE schemes can only support comparisons on ciphertexts from the same user, which does not meet the requirement for the multi-user environment. In this work, we introduce and design ORE schemes with delegation functionality, which is referred to as delegatable ORE (DORE). The "delegation" here is an authorization that allows for efficient ciphertext comparisons among different users. To the best of our knowledge, it is the first ORE that allows an user to delegate the comparison privilege for his ciphertexts, which also opens the door for future explorations. At the heart of the construction and analysis of DORE is a new building tool proposed in this work, named delegatable equality-revealing encoding (DERE), which might be of independent interest.
2018-04-02
Boicea, A., Radulescu, F., Truica, C. O., Costea, C..  2017.  Database Encryption Using Asymmetric Keys: A Case Study. 2017 21st International Conference on Control Systems and Computer Science (CSCS). :317–323.

Data security has become an issue of increasing importance, especially for Web applications and distributed databases. One solution is using cryptographic algorithms whose improvement has become a constant concern. The increasing complexity of these algorithms involves higher execution times, leading to an application performance decrease. This paper presents a comparison of execution times for three algorithms using asymmetric keys, depending on the size of the encryption/decryption keys: RSA, ElGamal, and ECIES. For this algorithms comparison, a benchmark using Java APIs and an application for testing them on a test database was created.

2017-03-20
Hahn, Florian, Kerschbaum, Florian.  2016.  Poly-Logarithmic Range Queries on Encrypted Data with Small Leakage. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :23–34.

Privacy-preserving range queries allow encrypting data while still enabling queries on ciphertexts if their corresponding plaintexts fall within a requested range. This provides a data owner the possibility to outsource data collections to a cloud service provider without sacrificing privacy nor losing functionality of filtering this data. However, existing methods for range queries either leak additional information (like the ordering of the complete data set) or slow down the search process tremendously by requiring to query each ciphertext in the data collection. We present a novel scheme that only leaks the access pattern while supporting amortized poly-logarithmic search time. Our construction is based on the novel idea of enabling the cloud service provider to compare requested range queries. By doing so, the cloud service provider can use the access pattern to speed-up search time for range queries in the future. On the one hand, values that have fallen within a queried range, are stored in an interactively built index for future requests. On the other hand, values that have not been queried do not leak any information to the cloud service provider and stay perfectly secure. In order to show its practicability we have implemented our scheme and give a detailed runtime evaluation.

Fuhry, Benny, Tighzert, Walter, Kerschbaum, Florian.  2016.  Encrypting Analytical Web Applications. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :35–46.

The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients' data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing solutions for encrypting data in web applications poorly support such encryption. We employ a proxy that adjusts the encryption to the level necessary for the client's usage and also supports additively homomorphic encryption. This proxy is deployed at the client and all encryption keys are stored and managed there, while the application is running in the cloud. Our proxy is stateless and we only need to modify the database driver of the application. We evaluate an instantiation of our architecture on an exemplary application. We only slightly increase page load time on average from 3.1 seconds to 4.7. However, roughly 40% of all data columns remain probabilistic encrypted. The client can set the desired security level for each column using our policy mechanism. Hence our proxy architecture offers a solution to increase the confidentiality of the data at the cloud provider at a moderate performance penalty.

Barbareschi, Mario, Cilardo, Alessandro, Mazzeo, Antonino.  2016.  Partial FPGA Bitstream Encryption Enabling Hardware DRM in Mobile Environments. Proceedings of the ACM International Conference on Computing Frontiers. :443–448.

The concept of digital right management (DRM) has become extremely important in current mobile environments. This paper shows how partial bitstream encryption can allow the secure distribution of hardware applications resembling the mechanisms of traditional software DRM. Building on the recent developments towards the secure distribution of hardware cores, the paper demonstrates a prototypical implementation of a user mobile device supporting such distribution mechanisms. The prototype extends the Android operating system with support for hardware reconfigurability and showcases the interplay of novel security concepts enabled by hardware DRM, the advantages of a design flow based on high-level synthesis, and the opportunities provided by current software-rich reconfigurable Systems-on-Chips. Relying on this prototype, we also collected extensive quantitative results demonstrating the limited overhead incurred by the secure distribution architecture.

2015-05-06
Miyoung Jang, Min Yoon, Jae-Woo Chang.  2014.  A privacy-aware query authentication index for database outsourcing. Big Data and Smart Computing (BIGCOMP), 2014 International Conference on. :72-76.

Recently, cloud computing has been spotlighted as a new paradigm of database management system. In this environment, databases are outsourced and deployed on a service provider in order to reduce cost for data storage and maintenance. However, the service provider might be untrusted so that the two issues of data security, including data confidentiality and query result integrity, become major concerns for users. Existing bucket-based data authentication methods have problem that the original spatial data distribution can be disclosed from data authentication index due to the unsophisticated data grouping strategies. In addition, the transmission overhead of verification object is high. In this paper, we propose a privacy-aware query authentication which guarantees data confidentiality and query result integrity for users. A periodic function-based data grouping scheme is designed to privately partition a spatial database into small groups for generating a signature of each group. The group signature is used to check the correctness and completeness of outsourced data when answering a range query to users. Through performance evaluation, it is shown that proposed method outperforms the existing method in terms of range query processing time up to 3 times.

2015-05-05
Miyoung Jang, Min Yoon, Jae-Woo Chang.  2014.  A privacy-aware query authentication index for database outsourcing. Big Data and Smart Computing (BIGCOMP), 2014 International Conference on. :72-76.

Recently, cloud computing has been spotlighted as a new paradigm of database management system. In this environment, databases are outsourced and deployed on a service provider in order to reduce cost for data storage and maintenance. However, the service provider might be untrusted so that the two issues of data security, including data confidentiality and query result integrity, become major concerns for users. Existing bucket-based data authentication methods have problem that the original spatial data distribution can be disclosed from data authentication index due to the unsophisticated data grouping strategies. In addition, the transmission overhead of verification object is high. In this paper, we propose a privacy-aware query authentication which guarantees data confidentiality and query result integrity for users. A periodic function-based data grouping scheme is designed to privately partition a spatial database into small groups for generating a signature of each group. The group signature is used to check the correctness and completeness of outsourced data when answering a range query to users. Through performance evaluation, it is shown that proposed method outperforms the existing method in terms of range query processing time up to 3 times.

2015-04-30
Miyoung Jang, Min Yoon, Jae-Woo Chang.  2014.  A privacy-aware query authentication index for database outsourcing. Big Data and Smart Computing (BIGCOMP), 2014 International Conference on. :72-76.

Recently, cloud computing has been spotlighted as a new paradigm of database management system. In this environment, databases are outsourced and deployed on a service provider in order to reduce cost for data storage and maintenance. However, the service provider might be untrusted so that the two issues of data security, including data confidentiality and query result integrity, become major concerns for users. Existing bucket-based data authentication methods have problem that the original spatial data distribution can be disclosed from data authentication index due to the unsophisticated data grouping strategies. In addition, the transmission overhead of verification object is high. In this paper, we propose a privacy-aware query authentication which guarantees data confidentiality and query result integrity for users. A periodic function-based data grouping scheme is designed to privately partition a spatial database into small groups for generating a signature of each group. The group signature is used to check the correctness and completeness of outsourced data when answering a range query to users. Through performance evaluation, it is shown that proposed method outperforms the existing method in terms of range query processing time up to 3 times.